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Relationship between acoustic indices, 
length of recordings and processing time: a 
methodological test
Relación entre índices acústicos, duración de las grabaciones 
y tiempo de procesamiento: una prueba metodológica
Edgar Cifuentes   , Juliana Vélez Gómez , Simon J. Butler   

Abstract
Ecoacoustic approaches have the potential to provide rapid biodiversity assessments and avoid costly fieldwork. 
Their use in biodiversity studies for improving management and conservation of natural landscapes has grown 
considerably in recent years. Standardised methods for sampling acoustic information that deliver reliable and 
consistent results within and between ecosystems are still lacking. Sampling frequency and duration are particu-
larly important considerations because shorter, intermittent recordings mean recorder batteries last longer and 
data processing is less computationally intensive, but a smaller proportion of the available soundscape is sam-
pled. Here, we compare acoustic indices and processing time for subsamples of increasing duration clipped from 
94 one-hour recordings, to test how different acoustic indices behave, in order to identify the minimum sample 
length required. Our results suggest that short recordings distributed across the survey period accurately repre-
sent acoustic patterns, while optimizing data collection and processing. ACI and H are the most stable indices, 
showing an ideal sampling schedule of ten 1-minute samples in an hour. Although ADI, AEI and NDSI well re-
present acoustic patterns under the same sampling schedule, these are more robust under continuous recording 
formats. Such targeted subsampling could greatly reduce data storage and computational power requirements 
in large-scale and long-term projects.
Keywords. Ecoacoustics. Frequency of samples. Processing time. Soundscape ecology.

Resumen
La ecoacústica tiene el potencial de proporcionar evaluaciones rápidas de biodiversidad, evitando costosas salidas 
de campo. Su uso en estudios de biodiversidad para mejorar la gestión y conservación de paisajes naturales ha 
crecido considerablemente en los últimos años. Aún faltan métodos estandarizados para muestrear información 
acústica, que brinden resultados confiables y consistentes dentro y entre ecosistemas. La frecuencia y la dura-
ción de las muestras son consideraciones particularmente importantes, porque grabaciones cortas e intermitentes 
hacen que el consumo de las baterías de la grabadora sea menor y el procesamiento de datos sea menos intenso 
computacionalmente, pero se muestrea una proporción menor del paisaje sonoro. En este estudio, comparamos 
índices acústicos y el tiempo de procesamiento para submuestras de diferentes duraciones, recortadas de 94 gra-
baciones de una hora, para entender el comportamiento de los diferentes índices, a fin de identificar la duración 
mínima requerida de las muestras. Nuestros resultados sugieren que grabaciones de corta duración, distribui-
das a lo largo del período estudiado, representan con precisión los patrones acústicos y a su vez optimizan la 
recopilación y el procesamiento de datos. ACI y H son los índices más estables, mostrando un cronograma de 
muestreo ideal de diez muestras de 1 minuto por hora. Aunque ADI, AEI y NDSI representan bien los patrones 
acústicos bajo el mismo cronograma de muestreo, éstos son más robustos bajo formatos de grabación continua. 
Este tipo de submuestreo podría reducir en gran medida el almacenamiento de datos y los requisitos de potencia 
computacional en proyectos a gran escala y a largo plazo.
Palabras clave. Ecoacústica. Ecología del paisaje sonoro. Diseño experimental. Frecuencia de muestreo.
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Introduction

Quantifying biological diversity is fundamental for 
setting priorities for conservation (Brooks et al., 2006; 
Mittermeier et al., 1998), particularly in the current pe-
riod of dramatic biodiversity loss (Ceballos et al., 2015). 
This has traditionally relied on detailed species invento-
ries, which often demands an intense, costly sampling 
effort, especially in high-biodiversity areas (Lawton et 
al., 1998). Funding constraints mean many countries 
have been unable to implement adequate monitoring 
and therefore lack vital biodiversity information (Collen 
et al., 2008), and there is an urgent need to develop more 
efficient monitoring strategies. One approach has been 
to develop rapid biodiversity assessment methods that 
obtain indicators from indirect cues of diversity, such 
as the sound produced by animals (Sueur et al., 2008).

Examining the spatial and temporal variation in, and 
relationships between, sounds that emerge from biolo-
gical, geophysical and anthropogenic sources to form 
a “soundscape” can provide fundamental insights into 
environmental patterns and processes operating across 
landscapes (Pijanowski et al., 2011; Sueur & Farina, 
2015). Whilst the use of acoustic tools in biodiversity 
conservation is not new (Baptista & Gaunt, 1997), its use 
as a tool for monitoring biodiversity health and quan-
tifying responses to land-use change and management 
has grown rapidly in recent years (Ritts et al., 2016). It 
is particularly valuable in ecological research and con-
servation biology, because it is non-invasive, sensitive 
to multiple taxa, and allows widespread data collection 
since several places can be simultaneously surveyed 
(Gasc et al., 2015; Machado et al., 2017).

Analytical tools for processing soundscape recordings 
have improved in recent years, enabling large amounts 
of data to be readily analysed with minimal acoustical 
expertise through the use of standardised acoustic indi-
ces (Gasc et al., 2015). These acoustic indices can be used 
to quantify, for example, the acoustic complexity, diver-
sity or evenness of a soundscape at a specific place du-
ring a limited time period (Gasc et al., 2013). Given that 
the biophony – sounds generated by the community of 
species present – is a major contributor to soundscapes, 
the potential for using acoustic indices for biodiversity 
monitoring has been explored using both computational 
experiments (Zhao et al., 2019) and by evaluating their 
correlation with field-derived measurements such as 
number of song types (Sueur et al., 2008), species rich-
ness (Jorge et al., 2018; Towsey et al., 2014), and functio-
nal diversity (Gasc et al., 2013). Indeed, acoustic analyses 

are now widely used for biodiversity monitoring and 
methodological guidelines for sampling design (Sugai 
et al., 2019), which recommend the use of continuous re-
cordings and the selection of a range of acoustic indices 
to better capture site variability and acoustic complexity, 
have recently been developed (Bradfer-Lawrence et al., 
2019). However, meeting these guidelines requires the 
collection and storage of large data files and can pose 
significant data processing challenges that remain to be 
explored. Furthermore, there are still unresolved ques-
tions around how acoustic indices represent different 
elements of biodiversity and how to optimize their use 
for acoustic monitoring and their relationship with sam-
pling schedule and recording duration.

The present study focuses on the behaviour of acoustic 
indices according to recording duration and sampling 
regularity, in order to inform the optimal sampling stra-
tegy for biodiversity assessments; shorter and less fre-
quent recordings result in a slower drain of recording 
device batteries and reduced storage requirements, thus 
allowing devices to be deployed for longer periods of 
time, but may not capture fine-scale temporal varia-
tion in acoustic characteristics. We also calculated the 
processing time required to undertake each acoustic 
analysis. Specifically, we test the performance of and 
required processing time for five different acoustic in-
dices (Acoustic Complexity Index (ACI) (Pieretti et al., 
2011); Acoustic Diversity Index (ADI) (Villanueva-Ri-
vera et al., 2011); Acoustic Evenness Index (AEI) (Vil-
lanueva-Rivera et al., 2011); Acoustic Entropy Index 
(H) (Sueur et al., 2008); and Normalized Difference 
Soundscape Index (NDSI) (Kasten et al., 2012), using 
recordings varying in length from 1 minute to 60 mi-
nutes and collected in the mega diverse settings of the 
Brazilian Amazon and Cerrado.

Material and methods

Study area. Sound files were recorded in two lo-
cations in Brazil: Site 1 (0°01’08.0”S–51°07’22.1”W) 
is a secondary Amazon rainforest patch surroun-
ded by farms and minor urban areas, whilst Site 2 
(21°42’51.3”S–45°00’42.4”W) is three kilometres away 
from an urban area and located in a secondary forest of 
transition between Mata Atlantica and Cerrado.

Data collection. SongMeter SM4 © recorders (Wildli-
fe Acoustics, Inc.) were used to record sounds in both 
sampling sites in January 2018. The devices were pro-
grammed to continuously record one-hour WAV files 
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at the default settings (i. e. 24 kHz sampling rate, 16 bits, 
stereo), for a total of 88 hours in site 1 and 50 hours in 
site 2. Each one-hour file was 345.3 MB and all 138 files 
together sum 47.7 GB. However, 44 files were subse-
quently discarded due to loud geophysical sounds (e.g. 
rain, thunder) that masked sounds from other sources 
(Sánchez-Giraldo et al., 2020). This selection was done 
by checking spectrograms made with Kaleidoscope 
software version 4.5.4 (Wildlife Acoustics Inc, 2017).

Subsampling. To analyse the influence of recording 
duration on acoustic index characteristics, each of 
the 94 one-hour recordings was split into consecutive 
length class subsamples of 1, 5, 10, 15, 20, 30 and 40 
minutes, resulting in 60 subsamples of 1 minute, 12 of 
5 minutes, 6 of 10 minutes, 4 of 15 minutes, 3 of 20 mi-
nutes, 2 of 30 minutes and 1 of 40 minutes per original 
recording. The 40-minute subsample was taken from 
between minutes 10 and 50 of the original recording. 
To evaluate the appropriate number of subsamples to 
take (hereafter subsample frequency), we compared 
the performance of acoustic indices derived from con-
tinuous blocks of recording, with those derived from 
recordings representing the same total duration, but 
comprising multiple, shorter recordings spread even-
ly across the full-hour recording period. For example, 
acoustic indices for 40 subsamples of 1 minute, 8 of 5 
minutes, 4 of 10 minutes, 2 of 20 minutes and 1 of 40 
minutes were compared (Figure 1).

Data processing. All statistical and sound analyses were 
performed using R software version 3.4.3 (R Core Team, 
2018) and the soundecology package (Villanueva-Rivera 
& Pijanowski, 2016), with ACI, ADI, AEI, H and NDSI 
calculated using default parameters in the multiple_
sounds function. Since ACI is a cumulative index, it was 
divided by the length in minutes of each subsample to 
get a comparable range of values, as recommended in 
soundecology package description; other indices had no 
further calculations.

Statistical analysis. Spearman Rank correlations were 
performed to test for associations between the five in-
dices and, for each index in turn, between the value 
derived from processing the complete one-hour recor-
ding and those from processing subsamples of varying 
duration. For the subsample frequency analysis, index 
values derived from all subsamples present in a spe-
cific combination of frequency and recording duration 
(Figure 1) were averaged, and this value was then co-
rrelated with the index value derived from processing 
the complete one-hour recording they were subsam-
pled from.

Processing time. Processing time was defined as the 
time taken to calculate each acoustic index for a given 
recording and is expected to vary according to com-
puting capabilities. This study was performed in two 
phases, each with different computing capabilities. 

Figure 1. Experimental design examples for different combinations of subsample frequency, adding up to a total analysed 
time of 10, 20 and 40 minutes. Grey segments represent the subsamples taken from one-hour files.

Figura 1. Ejemplos de diseño experimental para diferentes combinaciones de frecuencia de las submuestras que suman un tiempo total ana-
lizado de 10, 20 y 40 minutos. Los segmentos grises representan las submuestras tomadas de archivos de una hora.
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Phase 1 was a preliminary analysis, for which calcu-
lations were run on a computer with an Intel Core i7 
processor running at 1.8 GHz, using 4GB 1333 MHz 
DDR3 of RAM, running Mac OS X 10.8 Mountain Lion. 
Phase 2 was run in a more powerful computer with 
an Intel Core i7 processor running at 3.2 GHz, using 
64GB 2667 MHz DDR4 of RAM, running macOS 10.14 
Mojave. Note that, ACI can only be calculated for re-
cordings up to about 20 minutes; in phase 1, a simple 
linear regression was used to predict processing time 
for recordings of 30, 40 and 60 minutes, but in phase 2, 
ACI processing times for 30, 40 and 60 minutes were 
obtained by summing index values derived from the 
appropriate number of 10-minute recordings.

Results

Acoustic Complexity Index (ACI). Whilst statistically 
significant, the correlations between ACI and the other 
acoustic indices were weakest, with no clear linear pa-
tterns identified (Figure 2). Reducing recording length 
introduced most variation in ACI, with correlation va-
lues for indices for individual 1-minute samples and 
their associated one-hour recording varying between 
0.55 and 0.87, with a median of 0.76 (Figure 3A). As 
subsample duration increased, median correlation va-
lues increased and the range of correlation values for 
individual subsamples of the same duration decreased, 
with the level of the lowest correlation values increa-
sing quicker than that of the highest correlation value 
(Figure 3A). Splitting the total sampling period into 
multiple, shorter sampling periods of the same total 
length improved sample representativeness (Figure 3B). 
This is especially noticeable for shorter subsamples, 
with the average metric across 10 or more one-minute 
subsamples having a correlation values with the in-
dex from the associated one-hour recording of >0.97 
(Figure 3B).

Acoustic Diversity Index (ADI) and Acoustic Even-
ness Index (AEI). Although ADI and AEI measure 
different acoustic characteristics (Villanueva-Rivera 
et al., 2011), they were very strongly and negatively 
correlated (Spearman ρ = -0.99, n = 42 864, p < 0.001, 
Figure 2). As subsample duration increased, so the 
strength of the correlation between the ADI for the 
subsample and ADI for the associated one-hour re-
cording also increased, with variability in correlation 
strength between individual subsamples of the same 
duration and the full recording also decreasing. A 

similar pattern was evident for AEI (Figure 3A). Con-
tinuous recordings were more representative of the 
associated one-hour recording than recordings of the 
same total duration, but split over multiple, shorter 
subsamples (Figure 3B). Interestingly, index values 
averaged over multiple subsamples were never truly 
representative of the full hour recording, even if the 
cumulative time sampled was very high. For instance, 
averaged ADI values for 60 1-minute subsamples had 
the same degree of correlation (0.88) with the whole 
hour as the averaged ADI values for 10 1-minute sub-
samples (Figure 3B).

Acoustic Entropy (H). H showed a strong positive co-
rrelation with ADI and NDSI, a strong negative correla-
tion with AEI, and a very weak but significant negative 
correlation with ACI (Figure 2). Among all indices, H 
showed the highest correlation between values for sub-
samples and full recordings and lowest variability be-
tween subsamples of the same duration (Figure 3A). 
Half of the correlations between 1-minute subsamples 
and their associated one-hour recording were above 0.9, 
with the lowest correlation value was 0.72 (Figure 3A). 
H follows a similar pattern to ACI in that index va-
lues averaged across multiple, shorter samples were 
more representative of the one-hour recording than 
values from a continuous recording of the same total 
length (Figure 3B). That is, for example, the average in-
dex value for 10 samples of 1-minute was more stron-
gly correlated with the index value for the associated 
one-hour recording than the average metric across 2 
samples of 5 minutes or the metric for one 10-minute 
sample (Figure 3B).

Normalized Difference Soundscape Index (NDSI). 
This index is weakly associated with the other indices 
calculated in this study (Figure 2) but shows similar 
patterns to ADI and AEI with regard recording length 
and subsampling frequency (Figure 3). NDSI was the 
most sensitive index to recording length, showing 
the sharpest decline in correlation values when shor-
tening subsample length (Figure 3A). However, the 
variability in correlation strength between individual 
sub-samples of the same length and the associated one-
hour recording was lower than for the other indices 
examined, particularly at shorter subsample lengths 
(Figure 3A). As with ADI and AEI, index values from 
continuous recordings tended to be more representa-
tive of the one-hour recordings than averaged values 
from across multiple, shorter subsamples of the same 
total length (Figure 3B).
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Figure 2. Data distribution and associations between acoustic indices. Spearman correlation values and scatterplots between 
indices (n = 42 864), and histograms with a density line for each index are shown. Red line indicates a LOESS (locally esti-
mated scatterplot smoothing). All correlations have p-values less than 0.001 (‘***’). ACI–Acoustic Complexity Index, ADI–
Acoustic Diversity Index, AEI–Acoustic Evenness Index, H–Acoustic Entropy Index and NDMS–Normalized Difference 
Soundscape Index.

Figura 2. Distribución de datos y asociaciones entre índices acústicos. Se muestran los valores de correlación de Spearman y los diagramas 
de dispersión entre los índices (n = 42 864), y los histogramas con línea de densidad para cada índice. La línea roja indica LOESS (regresión 
local). Todas las correlaciones tienen valores p inferiores a 0,001 (“***”). ACI: índice de complejidad acústica, ADI: índice de diversidad 
acústica, AEI: índice de uniformidad acústica, H: índice de entropía acústica y NDMS: índice de paisaje sonoro de diferencia normalizada.
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Processing time. Processing time for all indices increa-
sed with increasing recording length, but the rate of 
increase differed between indices. Both absolute time 
and rate of increase was substantially lower with in-
creased computational capabilities. For short-dura-
tion recordings, or with high computing capabilities 
(3.2 GHz processor and 64GB RAM), ADI, AEI and 

ACI processing times were approximately one-third 
to one-quarter those of H and NDSI but, at lower com-
puting capabilities (1.7 GHz processor and 4GB RAM), 
processing time for ADI and AEI increased exponen-
tially with increasing recording duration and excee-
ding NDSI processing time for 60-minute recordings 
(Figure 4).

Figure 3. Spearman rank correlation between: A, the acoustic index value for each subsample duration and the complete 
one-hour recording from which it was subsampled; B, mean index values for subsamples representing combinations of re-
cording length and subsample frequency (see Methods and Figure 1 for more details) and the complete one-hour recording. 
In A, the black line indicates the median of correlation values and the shaded areas denote the range. ACI,Acoustic Com-
plexity Index; ADI, Acoustic Diversity Index; AEI, Acoustic Evenness Index; H,Acoustic Entropy Index; NDSI,Normalized 
Difference Soundscape Index.

Figura 3. Correlación de rango de Spearman entre: A, el valor del índice acústico para cada submuestra y la grabación de una hora de la 
cual se submuestreó; B, valor promedio del índice de las submuestras presentes en cada combinacion de duración y frecuencia de muestreo 
(ver Métodos y Figura 1 para más detalles) y la grabación completa de una hora. En A, la línea negra indica la mediana de los valores de 
correlación y las áreas sombreadas denotan el rango. ACI, índice de complejidad acústica; ADI, índice de diversidad acústica; AEI, índice de 
uniformidad acústica; H, índice de entropía acústica; NDSI, índice de paisaje sonoro de diferencia normalizada.
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Total processing time was 195.9 hours, equivalent to ~8 
days, using high computing capabilities for calculating 
five acoustic indices to all subsamples and the comple-
te one-hour file (i.e. 120.9 hours of subsamples divided 
in: 391 of 1 minute, 78 of 5 minutes, 21 of 10 minutes, 
10 of 15 minutes, 6 of 20 minutes, 3 of 30 minutes, 1 
of 40 minutes and 1 of 60 minutes). Total processing 
time for each index was 28.1 hours for ACI, 13.5 hours 
for ADI, 13.5 hours for AEI, 64.0 hours for H and 76.8 
hours for NDSI.

Discussion

Studies into the use of acoustic indices in environ-
mental research suggest that continuous recordings 
in the field are preferable, because they might reduce 
the deployment times required to capture soundscape 
variability (Bradfer-Lawrence et al., 2019). However, 
we show that distributing samples of shorter recor-
ding length across the survey period (i.e., representa-
tive of the population of continuous recordings) can 

offer an opportunity to optimize data collection and 
processing, while identifying analogous patterns in 
acoustic indices values, much more for ACI and H 
than for AEI, ADI or NDSI. Given that recommen-
dations for acoustic monitoring suggest collecting a 
minimum of 120 hours of audio recordings per site to 
reduce acoustic indices variability and improve pre-
cision (Bradfer-Lawrence et al., 2019), such targeted 
subsampling could greatly reduce data storage and 
computational power requirements.

Index choice, frequency of recording and optimal re-
cording length will all depend on the biodiversity cha-
racteristics being inferred from soundscape records. 
For example, NDSI is highly informative in measuring 
changes of anthropogenic pressures, as it gives an in-
dication of an increase (or decrease) in anthrophony 
(Kasten et al., 2012), whilst ACI, ADI, AEI, and H are 
more related to direct diversity measures (e.g. Brad-
fer-Lawrence et al., 2019; Gasc et al., 2013; Jorge et al., 
2018; Sueur et al., 2008; Towsey et al., 2014). Whilst 
indices derived from shorter recordings are broadly 

Figure 4. Mean processing time for computing acoustic indices at each recording length with two different equipments, using 
the multiple_sounds function in soundecology R package (Villanueva-Rivera & Pijanowski, 2016). Standard error bars are not 
shown as they were negligible, due to consistency in processing time (mean relative standard error of 0.28%).

Figura 4. Tiempo promedio de procesamiento que tardó el calculo de los índices acústicos en cada tamaño de grabación con dos equipos di-
ferentes, utilizando la función multiple_sounds de la biblioteca soundecology en R (Villanueva-Rivera & Pijanowski, 2016). Las barras de error 
estándar no se muestran, debido a que el tiempo de procesamiento fue altamente consistente y el error no fue significativo (error estándar 
relativo medio de 0.28%).
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representative of the immediate time period from which 
they are sampled, our results do suggest that both the 
precision and accuracy of ACI, ADI and AEI in particu-
lar will decrease with recording duration (Figure 3A). 
However, NDSI precision seems less affected by recor-
ding duration, whilst the precision and accuracy of H 
appear more stable under changes in recording dura-
tion. Each acoustic index also behaves differently in res-
ponse to changes in sampling frequency, with measures 
of AEI, ADI and NDSI more robust under continuous 
recording formats and ACI and H more robust under 
shorter, more frequent recording formats.

Although index choice should primarily be determined 
by the research objectives, other considerations, such 
as processing time, might help in the index selection, 
especially if computational power is a limiting factor. 
When computational capability is limited, calculation 
time of H from short recordings is equivalent to that 
for other indices, but as recording length increases, pro-
cessing times for H increase exponentially and the cal-
culation time of H from a one-hour recording is twice 
that required for other indices. This could be related to 
the way it is computed, as it is estimated as the product 
of both temporal and a spectral entropy, which requi-
res the computation of a mean spectrum using a Short 
Time Fourier Transform based on a non-overlapping 
sliding function window (Sueur et al., 2008). If focusing 
on acoustic characteristics represented by H, it would 
be much more efficient to use multiple shorter recor-
ding lengths, especially as the index value itself seems 
robust to this type of recording schedule. ADI and AEI 
processing time also increased exponentially with recor-
ding duration, but only with low computational capa-
bilities. This is likely to be related to computer memory 
saturation and reduction of processing performance. 
Conversely, NDSI and ACI present a linear trend for 
both computational capabilities, probably explained by 
their simpler calculation that involves few steps, and 
their relative slow rate of increase in processing time 
with increasing recording duration makes them valua-
ble indices when dealing with large amounts of data 
(Pieretti et al., 2011). Index computation optimization 
can also be achieved by evaluating the correlation be-
tween indices before conducting further processing and 
analysis; ADI, AEI and H appear highly correlated so 
computing all of them may be redundant as they reflect 
the same acoustic patterns.

When designing a recording schedule for biodiversity 
assessments using acoustic information, it is important 
to consider how the acoustic index behaves in relation 

to the duration and periodicity of samples. Long term 
projects for monitoring changes in biodiversity may 
prefer to use shorter recordings to prolong sampling 
periods and capture a wider temporal space. In such 
cases, we recommend the use of ACI and H, due to 
their accuracy and precision to representing soundsca-
pe characteristics with short recordings. Additionally, 
data processing would be less demanding (in particular 
for big data analysis), thus enabling rapid assessments 
and on-time actions to changes under the scope of bio-
diversity conservation.
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