Recibido: 8 de noviembre de 2022; Aceptado: 29 de mayo de 2023; : 9 de enero de 2024
Introducción
Las cianobacterias constituyen el grupo de microorganismos fotosintetizadores aeróbicos más antiguos del planeta. Se estima que su aparición fue hace unos 3500 millones de años (Bisby et al., 1995). Comparten algunas características estructurales con las bacterias (no poseen núcleo ni organelas y tienen pared celular tipo Gram negativa) y otras funcionales con las algas eucariotas (entre ellas, realizan fotosíntesis con liberación de oxígeno y tienen clorofila a). Esto las hace únicas en cuanto a su fisiología, tolerancia a condiciones extremas y flexibilidad adaptativa (Whitton & Potts, 2002).
Estos microorganismos han colonizado exitosamente todos los ecosistemas acuáticos del mundo y se encuentran dispersos en forma unicelular o pluricelular en ríos, lagos, represas y en ambientes marinos (Sant’Anna et al., 2006). También están presentes en todos los biotopos de los ecosistemas acuáticos, como la interfaz agua-aire, la columna de agua, el sedimento y sobre las macrófitas, siendo importantes miembros de las comunidades fitoplanctónicas y perifíticas (Oliver & Ganf, 2002). Muchas especies ocurren en condiciones extremas, en sistemas hipersalinos, aguas termales e incluso en regiones polares (Whitton & Potts, 2002; Meichtry et al., 2009). Su amplia distribución se debe a su metabolismo versátil y a una serie de adaptaciones estructurales y enzimáticas, como la presencia de ficobiliproteínas que auxilian la captación de luz para la fotosíntesis; la fijación de nitrógeno atmosférico a través de heterocitos; la producción de acinetos, células diferenciadas que funcionan como esporas de resistencia, y de vacuolas de gas o aerótopos, que permiten la migración vertical en la columna de agua; además, almacenan fósforo en forma de granos de polifosfato en su citoplasma y pueden ser tóxicas (Sant’Anna et al., 2006).
Su desarrollo esta comúnmente relacionado con el enriquecimiento de nutrientes o la eutrofización de los ecosistemas acuáticos (Moss et al., 1990), condición bajo la cual las cianobacterias pueden desarrollarse rápidamente, aumentando su biomasa hasta alcanzar niveles muy altos. A esto se le conoce como floraciones o blooms algales (Dillon & Rigler, 1974; Wetzel, 2001). Estas aglomeraciones pueden ser evidentes a simple vista por los cambios que causan en las características organolépticas del agua, la coloración y la turbidez que le confieren, o por las acumulaciones o franjas densas superficiales (Roldán y Ramírez, 2008). La presencia de florecimientos de cianobacterias se puede asociar también a la mortandad de organismos acuáticos debido al agotamiento del oxígeno disuelto (principalmente en las proximidades de la zona bentónica), a cambios en el pH, a altos niveles de amonio o a la liberación de cianotoxinas (Codd et al., 1999).
La presencia de floraciones de cianobacterias es motivo de preocupación debido a que muchos de estos organismos pueden producir sustancias con alta capacidad tóxica (Smayda, 1997; Bartram et al., 1999; Gonseth & Martínez, 2005), conocidas como cianotoxinas (Bonilla & Aubriot, 2009), las cuales pueden ocasionar intoxicaciones a animales y personas, no solo por consumo directo, sino por su inhalación o por el consumo de organismos acuáticos que bioacumulan estas sustancias, lo que constituye un riesgo sanitario (Carmichael, 1992; Falconer, 1994).
A pesar de que hay una gran diversidad de ecosistemas acuáticos, en Colombia hay pocos trabajos sobre este grupo de organismos y no existe un registro sistemático de floraciones, como tampoco normas estatales que permitan reportar los casos. Al respecto se conocen los trabajos de Quirós y Flórez (1987), Ramírez (1996), Palacio et al. (2015a), y de carácter taxonómico, solo se tiene conocimiento del trabajo de Palacio et al. (2015b). Por lo tanto, la información disponible sobre la riqueza específica de las cianobacterias es muy escasa. La mayoría de los estudios son trabajos de grado ecológicos, entre ellos, los de Escobar y Manjarres (1985), Bula (1985), Vásquez et al. (2006), Correa-Ochoa (2008), Herrera et al. (2014) y Ferrão-Filho et al. (2014).
Este estudio se llevó a cabo en la zona de ingreso del río Nare al embalse El Peñol-Guatapé. El área de influencia de las cuencas de los tributarios del embalse, en especial de la cuenca del río Nare, principal tributario, presenta un alto grado de intervención antrópica que condiciona la calidad sanitaria del agua y ha llevado a un avanzado grado de eutrofización del sistema. Este fenómeno se ha intensificado en los últimos años, durante los cuales se ha incrementado la frecuencia y densidad de las floraciones de cianobacterias en las zonas ribereñas o “colas”, principalmente del río Nare. Si bien el embalse lleva en operación más de cuarenta años, hasta el momento se desconocen cuáles son las cianobacterias causantes de las floraciones, su potencial tóxico o su ecología (https://www.cornare.gov.co/planes-de-ordenacion-y-manejo-de-cuencas-hidrograficas-pomcas/). Dado que, además de la generación de energía el embalse cumple fines turísticos y de producción pesquera, y en él se practican deportes náuticos y pesca deportiva, conocer las cianobacterias presentes es de gran importancia para su gestión ambiental. Por tanto, el objetivo de este trabajo es establecer la composición florística de las cianobacterias planctónicas en la zona de ingreso del río Nare en el embalse El Peñol-Guatapé e identificar las especies potencialmente formadoras de floraciones y potencialmente tóxicas, así como algunos de sus aspectos ecológicos y sanitarios.
Materiales y métodos
El embalse El Peñol-Guatapé, concluido en 1978, se localiza en el oriente antioqueño (6°13'20''N- 75°10'11''O), en una zona batolítica, a 50 km de la ciudad de Medellín y a una altitud de 1887,5 m s. n. m. El embalse tiene una capacidad, en su cota máxima, de 1240 millones de m3 y una profundidad máxima de 43 m. En total, cubre un área de 6240 ha y el tiempo de retención hidráulico es de 285 días. Se construyó represando el río Nare, que es su principal afluente. La primera etapa fue puesta en servicio entre 1971 y 1972, y la segunda, en 1979 (EPM-ESP, 1993). Este sistema es operado por Empresas Públicas de Medellín (EPM-ESP) y es el de mayor regulación del país, con una capacidad total de almacenamiento de 1071,7 millones de m3 (EPM-ESP, 1993). El embalse está destinado a la generación hidroeléctrica, pero también al turismo, los deportes náuticos y la producción pesquera.
El estudio se desarrolló en la zona lótica o riberina del embalse (donde ingresa el río Nare); un sector de reducida profundidad (6 m en promedio) y altamente influenciado por el río Nare, caracterizado por presentar mezcla total de la columna de agua (Bedoya, 2017). Se realizaron catorce campañas de muestreo quincenales, entre agosto de 2014 y febrero de 2015, durante las cuales se midió la transparencia (Dsd) mediante un disco Secchi y, a partir de estos resultados, se definieron las profundidades para la recolección de las muestras de agua. Mediante una botella muestreadora tipo Schindler de 5 L de capacidad se colectó una muestra integrando la zona fótica (subsuperficie (0,1 m), 10%I0 (Dsd x 1,35) y 1%I0 (Dsd x 2,75)), con el fin de realizar una muestra compuesta. Mediante una sonda multiparamétrica CTD se midieron in situ las variables pH y conductividad eléctrica. Luego, la muestra fue envasada y enviada al laboratorio de control calidad de EPM-ESP para la determinación de la concentración de las formas de nitrógeno inorgánico disuelto (nitratos, nitritos y amonio) y fosfato, mediante cromatografía iónica. Se registraron valores mínimo y máximo de las variables mencionadas. El muestreo de las cianobacterias se realizó mediante arrastre vertical en la zona fótica con una red de plancton (malla de 25 μm). Las muestras fueron fijadas con solución Transeau (formaldehído, alcohol, agua 1:3:6 y 5 % de glicerina líquida) en proporción 1:1 para su análisis en el laboratorio. Se midieron in situ algunas variables limnológicas de interés (pH y conductividad eléctrica) y se tomaron muestras para evaluar la concentración de las formas de nitrógeno orgánico disuelto (nitrito, nitrato y amonio) y fosfato.
Las características morfológicas de los organismos se observaron con la ayuda de un microscopio óptico binocular OLYMPUS CH30 a una magnificación de 1000x, equipado con una cámara digital Nikon D5300, y las características morfométricas, con el software Irfan-View 32-bit (Skiljan, 1996). En el Instituto de Botânica de São Paulo (Brasil) y bajo la dirección de la investigadora Célia Sant’Anna, se confirmaron las identificaciones realizadas inicialmente (usando un microscopio óptico binocular Zeiss modelo Axioplan-2 equipado con cámara digital Zeiss Axiocam MRc y software para medidas CarlZeiss AxioVision versión 4.6). Se observaron las características morfológicas y morfométricas de los taxones. Se realizaron mediciones de interés taxonómico en 30 individuos de cada taxón, con el fin de establecer la variabilidad morfométrica de la población. Estas medidas estuvieron representadas por los límites morfométricos, máximos y mínimos, de los organismos identificados. También se llevaron a cabo tinciones con tinta china, para evidenciar mucílagos en las formas coloniales y vainas en las formas filamentosas. Se emplearon claves, descripciones e ilustraciones de trabajos especializados (Gleiter, 1925; Anagnostidis & Komárek, 1985, 1988; Komárek &Anagnostidis, 1999; Sant’Anna et al., 2006; Sant’Anna et al., 2007). El sistema de clasificación adoptado en esta trabajo fue el propuesto por Hoffmann et al. (2005). Finalmente, las muestras se depositaron en la Colección Limnológica de la Universidad de Antioquia (CLUA).
Resultados y discusión
Se registraron 14 taxones infragenéricos de cianobacterias planctónicas, representados en dos órdenes (Chroococcales y Oscillatoriales), seis familias (Synechococcaceae, Merismopediaceae, Microcystaceae, Chroococcaceae, Oscillatoriales, Pseudanabaenaceae y Oscillatoriaceae), 10 géneros y 14 especies. Los géneros son: Radiocystis (Skuja) (una spp.), Synechocystis (Sauvageau) (una spp.), Merismopedia (Meyen) (una spp.), Woronichinia (Elenkin) (una spp.), Sphaerocavum (Azevedo & Sant’Anna) (una spp.), Microcystis (Lemmermann) (tres spp.), Chroococcus (Nägeli) (una spp.), Planktolyngbya (Anagnostidis & Komárek) (una spp.), Pseudanabaena (Lauterborn) (tres spp.) y Oscillatoria (Gomont) (una spp.).
A continuación, se presentan tres claves dicotómicas taxonómicas, una para la identificación de los diferentes géneros presentes (A). En los casos en que se observó una única especie, la pauta en la clave se refiere a la especie determinada; otra para la determinación de las especies de Microcystis (B); y una más para la determinación de las especies de Pseudanabaena (C).
A. Clave para identificar los géneros de cianobacterias
1a. Individuos unicelulares o coloniales……………………………………………………..……2
1b. Individuos filamentosos……………………….........................................................................8
2a. División celular en un plano. Colonias redondeadas, mucílago amplio y hialino, células dispuestas radialmente en la periferia de la colonia, esféricas, con aerótopos…………Radiocystis
2b. División celular en dos o más planos……………………………………………………….…3
3a. División celular en dos planos……………………...................................................................4
3b. División celular en tres o más planos………………………………………………………....7
4a. Individuos solitarios o formando pequeños agregados, células esféricas u ovaladas……………………………………………………………………………...Synechocystis
4b. Individuos coloniales………………………………………….………………………………5
5a. Colonias cuadráticas, tabulares, células esféricas u ovaladas, dispuestas en filas paralelas......................................................................................................................Merismopedia
5b. Colonias huecas, redondeadas o irregulares, células no dispuestas en filas………………..…6
6a. Células esféricas u ovaladas, unidas desde el centro por un pedicelo mucilaginoso fino y dispuestas radialmente hacia la periferia de la colonia................................................Woronichinia
6b. Células esféricas, dispuestas en la periferia de la colonia……………………... Sphaerocavum
7a. División celular siempre en tres planos. Colonias redondeadas o irregulares, multicelulares, mucílago hialino, difluente, células esféricas distribuidas irregularmente dentro del mucílago…......................................................................................................................Microcystis
7b. División celular en tres o más planos. Colonias redondeadas o irregulares, formadas por 2 a 16 células, mucílago hialino, firme, delimitante, células esféricas o semiesféricas, permaneciendo juntas.............................................................................................................................Chroococcus
8a. Tricomas con células discoídes, más anchas que largas……………………………scillatoria
8b. Tricomas con células cilíndricas más largas que anchas……………………………………9
9a. Tricomas con vaina mucilaginosa incospicua, constrictos o no, solitarios….....Planktolyngbya
9b. Tricomas sin vaina mucilaginosa, constrictos, con o sin aerótopos localizados en las extremidades de las células……………………………………………………..…Pseudanabaena
B. Clave para la identificación de las especies de Microcystis
1a. Colonias esféricas o irregulares, mucílago hialino, conspicuo, firme, delimitante, con contorno visible……………Microcystis wesenbergii
1b. Colonias esféricas o irregulares, mucílago hialino, difluente…………………..……………..2
2a. Colonias clatradas o no, mucílago amplio. Células concentradas en el centro de las colonias……................................................................................................Microcystis aeruginosa
2b. Colonias no clatradas, mucílago fino, con borde irregular y marcadas hendiduras. Células dispersas irregularmente dentro del mucílago, con mucílago individual.....Microcystis protocystis
C. Clave para la identificación de las especies de Pseudanabaena
1a. Tricomas viviendo libremente en la columna de agua, células con dos aerótopos polares……………………………………………………………….........Pseudanabaena galeata
1b. Tricomas viviendo en el interior del mucílago de otras cianobacterias o de otras microalgas, células sin aerótopos……………………2
2a. Tricomas constrictos…………...……………………………………Pseudanabaena mucicola
2b. Tricomas no constrictos o levemente constrictos………….......Pseudanabaena voronichinii
Las cianobacterias identificadas en el material colectado son descritas a continuación dentro de sus respectivas categorías taxonómicas.
Orden Chroococcales
Familia Synechococcaceae
Radiocystis fernandoi Komárek & Komárková-Legnerová 1993
Colonias esféricas o irregulares. Mucílago hialino, homogéneo, difluente, de margen amplia. Células esféricas, dispuestas radialmente en la periferia de la colonia, de 4,0 a 9,6 µm de diámetro, con aerótopos.
Comentarios taxonómicos. Esta especie puede ser confundida con M. aeruginosa. Además del plano de división celular de la colonia, una de las principales diferencias es la distribución de las células dentro de la colonia. En R. fernandoi las células se disponen radialmente del centro hacia la periferia, mientras que M. aeruginosa es una colonia maciza donde las células están situadas en todo el espesor de esta.
Ecología. Esta especie ha sido registrada en sistemas límnicos eutrofizados tropicales y subtropicales (Sant’Anna et al., 2008). En este estudio se registró bajo estas condiciones: pH: 8,8 - 9,4, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,05 - 0,56 mgNO3 -.L-1, nitrito: 0,004 - 0,05 mgNO2 -.L-1, amonio <0,01 - 0,07 mgNH4.L-1 y fosfato: <0,01 - 0,11 mgPO4 -3.L-1, junto a M. aeruginosa, M. protocystis y M. wesenbergii.
Se menciona como formadora de floraciones (Vieira et al., 2001; Vieira et al., 2003; Sant’Anna et al., 2008) y productora de microcistinas (Vieira et al., 2003; Lombardo et al., 2006; Sant’Anna et al., 2008).
Familia Merismopediaceae
Synechocystis sp. Sauvageau 1892
Células solitarias o en agrupaciones, con mucílago hialino y difluente, esféricas u ovaladas, de 0,7 a 1 µm de diámetro.
Comentarios taxonómicos. No fue posible su determinación a nivel específico, ya que solo se encontró un organismo.
Ecología. Las floraciones de Synechocystis se han encontrado asociadas con altos valores de pH y una baja proporción de NT:PT (Odebrecht et al., 2002; González et al., 2004). En este estudio el género fue poco frecuente, y se registró bajo las siguientes condiciones: pH: 8,7, conductividad eléctrica: 0,05 mS.cm-1, nitrato: 0,2 mgNO3 -.L-1, nitrito: 0,005 mgNO2 -.L-1, amonio: 0,05 mgNH4.L-1 y fosfato: 0,02 mgPO4 -3.L-1 .
Se menciona como productor de floraciones (González et al., 2004; Cavati et al., 2009) y de microcystinas (Odebrecht et al., 2002).
Merismopedia tenuissima Lemmermann 1898
Colonias planas, rectangulares. Mucílago hialino, difluente. Células distribuidas en hileras en el plano de la colonia, esféricas u ovaladas, de 0,9 a 1,7 µm de diámetro, de color verde o verde azul, sin aerótopos.
Ecología. M. tenuissima ocurre comúnmente en sistemas mesotróficos y eutróficos, y en cuerpos de agua alcalinos (Joosten, 2006). Se han registrado floraciones en lagos hipertróficos con concentraciones de fosfato elevadas (962 µgPO4.L-1 (Vidal et al., 2009). En este estudio fue registrada ocurriendo bajo un amplio rango de condiciones: pH: 7,7 - 9,3, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,05 - 0,23 mgNO3 -.L-1, nitrito: 0,004 - 0,018 mgNO2 -.L-1, amonio: <0,01 - 0,02 mgNH4.L-1, fosfato: 0,01 - 0,03 mgPO4 -3.L-1.
Se han observado floraciones en aguas estuarinas (Livingston, 2007). Se le menciona como productora de microcystinas y lipopolisacáridos (Vidal et al., 2009).
Woronichinia naegeliana (Unger) Elenkin 1933
Colonias huecas, esféricas o elipsoides. Mucílago hialino, amplio. Células dispuestas radialmente desde el centro a la periferia de la colonia, ovaladas, de 1,8 a 6,1 µm de diámetro, con aerótopos.
Comentarios taxonómicos. Frecuentemente se observaron colonias desagrupándose y liberando células para la formación de nuevas colonias.
Ecología. Esta especie es muy común en zonas templadas (Cronberg & Annadotter, 2006). Se ha encontrado ocurriendo en ambientes eutróficos, junto algunas especies de Microcystis (Joosten, 2006). En sistemas eutróficos de São Paulo ha sido registrada bajo las siguientes condiciones: pH: 7,0-7,9; nitrógeno total: 0,90 - 14,50 mg.L-1 (Sant´anna et al., 2006). En este ciclo de estudio se encontró bajo un amplio rango de condiciones (pH: 7,7 - 9,4, conductividad eléctrica: 0,05 - 0,06 mS.cm1, nitrato: 0,05 - 0,56 mgNO3 -.L-1, nitrito: 0,004 - 0,05 mgNO2 -.L-1, amonio: <0,01 - 0,07 mgNH4.L-1, fosfato: <0,01 - 0,11 mgPO4 -3.L-1), ocurriendo junto a M. aeruginosa, M. protocystis y M. wesenbergii.
Se menciona como formadora de floraciones (Willame et al., 2005; Rajaniemi‐Wacklin et al., 2006) y como productora de microcistinas y anatoxinas (Carvalho et al., 2013).
Sphaerocavum sp. Azevedo & Sant’Anna, 2003
Colonias huecas, irregulares (esféricas cuando jóvenes). Mucílago hialino, homogéneo, difluente, adyacente a las células. Células esféricas, de (1,6) 2,8 (4,1) μm diámetro, con aerótopos, dispuestas en la superficie de la colonia.
Comentarios taxonómicos. Sphaerocavum sp. puede confundirse con algunas especies del género Microcystis. Sin embargo, Sphaerocavum se caracteriza por presentar colonias huecas producto de división celular en dos planos, mientras que Microcystis presenta colonias compactas, con células organizadas tanto en la periferia como en el interior, y la división celular es en tres planos.
Ecología. Ocurre en cuerpos de agua mesotróficos y eutróficos de zonas tropicales y subtropicales (Mendoza, 2016). En el ciclo de este estudio fue registrado bajo las siguientes condiciones ambientales: pH: 7,67 - 9,26, conductividad eléctrica: 0,05 - 0,06 mS.cm-1 nitrato: 0,05 - 0,56 mgNO3 -.L-1, nitrito: 0,004 - 0,023 mgNO2 -.L-1, amonio: <0,01 - 0,07 mgNH4.L-1, fosfato: <0,01 - 0,03 mgPO4 -3.L-1.
No se ha mencionado que forma floraciones (Carvalho, 2007) y hasta el momento no se han reportado toxinas para el género (Azevedo & Sant’Anna 2003).
Familia Microcystaceae
Microcystis aeruginosa (Kützing) Kützing 1846
Colonias globosas, irregulares o esféricas, clatradas o no, mucílago hialino, difluente y muy poco desarrollado alrededor de los grupos de células. Células distribuidas en todos los niveles de la colonia, concentradas en el centro de las colonias, esféricas, de (3) 6,7 (11,7) µm de diámetro, con numerosos aerótopos.
Comentarios taxonómicos. Debido a su gran variabilidad morfológica, esta especie puede ser confundida con otros dos géneros, Radiocystis y Sphaerocavum. Sin embargo, la disposición de las células, siempre concentradas en el centro del mucílago y la división celular en tres planos distinguen a M. aeruginosa de las demás especies de estos dos géneros.
Ecología. Ocurre en cuerpos de agua eutróficos (Komárek & Anagnostidis, 1999). Ha sido registrada bajo un amplio rango de condiciones (transparencia: 0,15 - 2,50 m, nitrógeno total: 0,90 - 2,89 mgL-1, fosfato: 0,01 - 1,43 mgL-1), en diversos sistemas límnicos y en los remansos de los ríos (Sant´anna et al., 2006; Vidal et al., 2009). Se registró en el ciclo de estudio formando densos conglomerados, bajo las siguientes condiciones: pH: 8,5 - 9,8, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,03 - 0,56 mgNO3 -.L-1, nitrito: 0,05 - 0,004 mgNO2 -.L-1, amonio: <0,01 - 0,07 mgNH4.L-1, fosfato: <0,01 - 0,11 mgPO4 -3.L-1.
Es la especie productora de floraciones más estudiada del mundo (Falconer, 1983; Sant’Anna et al., 2008; Bonilla, 2009). Se menciona como productora de microcistinas, cyanoginosinas y compuestos sulfurados volátiles (Sant’Anna et al., 2008; Vidal et al., 2009; Carvalho et al., 2013).
Microcystis protocystis Crow 1923
Colonias irregulares con límites difusos, no clatradas. Mucílago fino, hialino, difluente, con borde irregular y marcadas hendiduras. Células dispersas irregularmente dentro del mucílago, con mucílago individual, esféricas, de (3,5) 6,25 (9,1) µm de diámetro, con aerótopos.
Comentarios taxonómicos. Sus caracteres morfológicos bien definidos facilitaron la determinación. Fue encontrado ocurriendo junto con M. aeruginosa.
Ecología. Komárek & Anagnostidis (1999) y Komárek & Komárková (2002) indicaron que es una especie tropical, que ocurre en cuerpos de agua leníticos eutróficos. Ha sido registrada en embalses y en lagos urbanos bajo un amplio rango de condiciones (transparencia: 0,15 - 2,50 m, nitrógeno total: 0,90 - 2,89 mg.L-1, ortofosfato: 0,01 - 1,43 mg.L-1) (Sant´anna et al., 2006; Vidal et al., 2009). En este estudio ocurrió bajo las siguientes condiciones: pH: 9,11 - 9,37, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,05 - 0,21 mgNO3 -.L-1, nitrito: 0,05 - 0,004 mgNO2 -.L-1, amonio: <0,01 - 0,05 mgNH4.L-1, fosfato: <0,01 - 0,11 mgPO4 -3.L-1. Se ha reportado como productora de floraciones (Costa et al., 2006; Sant’Anna et al., 2008; Bonilla, 2009), y como productora de microcistinas (Anjos et al., 2008; Sant’Anna et al., 2008; Vidal et al., 2009).
Microcystis wesenbergii (Komárek) Komárek in. Kondrateva 1968
Colonias esféricas, cuando jóvenes. En la fase adulta, alargadas o irregulares, con o sin clatros, algunas veces compuestas por subcolonias. Mucílago hialino, firme, conspicuo, delimitante, con contorno muy visible. Células dispuestas desordenadamente dentro del mucílago, incluso cerca al límite de la colonia, esféricas, de (3,4) 5,33 (7,3) µm de diámetro, con aerótopos.
Comentarios taxonómicos. El mucílago firme, delimitante y visible diferencia claramente a M. wesenbergii de otras especies de este género.
Ecología. Esta especie es común en cuerpos de agua eutróficos. Se ha encontrado ocurriendo junto a otras especies del género Microcystis (Komárek & Anagnostidis, 1999; Komárek & Komárková, 2002), bajo un amplio rango de condiciones (transparencia: 0,15 - 2,50 m, nitrógeno total: 0,90 - 2,89 mg.L-1, ortofosfato: 0,01 - 1,43 mg.L-1) (Sant´anna et al., 2006; Vidal et al., 2009). En este estudio ocurrió bajo las siguientes condiciones: pH: 7,67 - 9,37, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,05 - 0,43 mgNO3 -.L-1, nitrito: 0,004 - 0,018 mgNO2 -.L-1, amonio: <0,01 - 0,05 mgNH4.L-1, fosfato: <0,01 - 0,03 mgPO4 -3.L-1.
Suele formar floraciones monoespecíficas (Kondrateva, 1968) y ha sido reportada como productora de microcistinas (Sant’Anna et al., 2008; Vidal et al., 2009).
Familia Chroococcaceae
Chroococcus minutus (Kützing) Nägeli 1849
Colonias esféricas u elípticas, mucílago amplio difluente o no, homogéneo, firme y delimitante. Células esféricas o semiesféricas después de la división, de (2,3) 6,7 (10,2) µm de diámetro, de color verde azul o verde.
Comentarios taxonómicos. Sus caracteres morfológicos bien definidos facilitaron la determinación.
Ecología. Ocurre en cuerpos de agua oligo a eutróficos (Komárek & Anagnostidis, 1999), en el plancton o en el metafiton. También puede encontrarse como epífita epipélica y edáfica, en ambientes mixtos (temperatura del agua: 21 - 29 °C, pH: 6 - 8,6 (Novelo, 1993). C. minutus fue encontrada bajo diferentes condiciones entre ellas: pH: 7,67 - 9,79, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,03 - 0,43 mgNO3 -.L-1, nitrito: 0,004 - 0,05 mgNO2 -.L-1, amonio: <0,01 - 0,06 mgNH4.L-1, fosfato: <0,01 - 0,11 mgPO4 -3.L-1.
Se menciona como productora de floraciones (Berman et al., 1998). Para esta especie no se tiene registro de toxinas.
Orden Oscillatoriales
Familia Pseudanabaenaceae
Planktolyngbya sp. Anagnostidis & Komárek 1988
Filamentos solitarios, con vaina hialina, cilíndricos, isopolares, uniseriados, constrictos o no, no atenuados en los extremos. Células cilíndricas, de 2 a 5 μm diámetro, más largas que anchas, raramente isodiamétricas, sin aerótopos o con un aerótopo polar. Célula apical redondeada, no capitada.
Comentarios taxonómicos. No fue posible llegar a un nivel taxonómico más íntimo, por escasez del material.
Ecología. Este género ha sido registrado en cuerpos de agua oligo a eutróficos (Komárek & Anagnostidis, 2005). En este estudio fue poco frecuente, ocurriendo bajo las siguientes condiciones: pH: 7,67, conductividad eléctrica: 0,05 mS.cm-1, nitrato: 0,23 mgNO3 -.L-1, nitrito: 0,18 mgNO2 -.L-1, amonio: <0,01 mgNH4.L-1 y fosfato: 0,03 mgPO4 -3.L-1.
Se ha reportado que algunas especies del género son productoras de floraciones (Mihaljević & Stević, 2011; Jakubowska, 2013). El género Planktolyngbya produce saxitoxina, microcistinas, lyngbyatoxina-a y lipopolisacáridos (Vidal et al., 2009).
Pseudanabaena mucicola (Naumann & Hubber-Pestalozzi) Schwabe 1964
Tricomas solitarios o en pequeños agregados cortos (máximo 3 a 6 células), rectos o curvados, cilíndricos, septos constrictos, ápices no atenuados. Mucílago hialino y difluente. Células cortas, cilíndricas, más largas que anchas, entre 1,0 y 2,0 μm de diámetro y 2,6 y 7 μm de largo, sin aerótopos. Célula apical redondeada o cónica-redondeada y sin caliptra.
Comentarios taxonómicos. P. mucicola fue encontrada habitando dentro del mucílago de M. aeruginosa, M. protocystis y R. fernandoi.
Ecología. Ha sido registrada en el mucilago de M. aeruginosa bajo un amplio rango de condiciones (transparencia: 0,15 - 2,50 m, nitrógeno total: 0,90 - 2,89 mg.L-1, ortofosfato: 0,01 - 1,43 mg.L-1), en diversos sistemas límnicos y en los remansos de los ríos (Vidal et al., 2009; Szeląg-Wasilewska et al., 2009). En este estudio ocurrió bajo las siguientes condiciones: pH: 7,7 - 9,8, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,03 - 0,56 mgNO3 -.L-1, nitrito: 0,004 - 0,04 mgNO2 -.L-1, amonio: <0,01 - 0,07 mgNH4.L-1, fosfato: <0,01 - 0,11 mgPO4 -3.L-1.
Se menciona como productora de floraciones y de microcistinas (Vidal et al., 2009).
Pseudanabaena voronichinii (Voronichin) Anagnostidis 2001
Talos solitarios, cortos (2 a 8 células), rectos o ligeramente curvados, cilíndricos, septos levemente constrictos o no, no atenuados o levemente atenuados en los extremos. Células cilíndricas, más largas que anchas, de 0,7 a 1,6 μm de diámetro y 2,2 a 5,7 μm de largo, algunas veces con uno, dos o más gránulos refractivos, sin aerótopos. Célula apical redondeada o cónica-redondeada.
Comentarios taxonómicos. En el material colectado fue observada ocasionalmente en la periferia de algunas colonias de M. protocystis y de M aeruginosa.
Ecología. Esta especie ha sido registrada en el mucílago de M. protocystis (Komárek & Komárková-Legnerová, 2007; Tavera et al., 2013). No fue muy frecuente durante el ciclo de este estudio, donde fue registrada bajo las siguientes condiciones: pH: 9,17 - 9,26, conductividad eléctrica: 0,05 - 0,06 mS.cm-1, nitrato: 0,06 - 0,08 mgNO3 -.L-1, nitrito: 0,004 - 0,05 mgNO2 -.L-1, amonio: 0,04 - 0,05 mgNH4.L-1 y fosfato: <0,01 - 0,11 mgPO4 -3.L-1.
Suele desarrollarse en el mucílago de M. protocystis y de M. aeruginosa (Komárek & Komárková-Legnerová, 2007). No presenta registros de producción de toxinas.
Pseudanabaena galeata Böcher 1949
Tricomas solitarios o formando pequeños aglomerados delgados, rectos o levemente curvos, constrictos. Ápices no atenuados. Células cilíndricas, más largas que anchas, de 1,4 a 1,6 μm diámetro y 2,4 a 9,0 μm de largo, con dos aerótopos polares. Célula apical cilíndrica con ápice arredondeado y sin espesamiento.
Ecología. Ha sido registrada en cuerpos de agua oligo a eutróficos (Komárek & Anagnostidis, 2005). Fue poco frecuente durante el período de estudio, se registró bajo las siguientes condiciones: pH: 9,11, conductividad: 0,05 mS.cm-1, nitrato: 0,05 mgNO3 -.L-1, nitrito: 0,004 mgNO2 -.L-1, amonio: 0,02 mgNH4.L-1 y fosfato: <0,01 mgPO4 -3.L-1.
Se menciona como productora de floraciones (Rangel et al., 2014) y como productora de toxinas no identificadas (Rangel et al., 2014).
Familia Oscillatoriaceae
Oscillatoria limosa Agardh ex Gomont 1892
Talos solitarios, extensos, rectos o raramente curvados, septos no constrictos, ápices un poco atenuados o no. Células más anchas que largas, de 14,3 a 16,0 μm diámetro y 3,3 a 4,6 μm de largo; con contenido granuloso, sin aerótopos. Célula apical cilíndrica o redondeada, sin caliptra.
Comentarios taxonómicos. Organismo con muy baja presencia durante el estudio. Solo se registró un individuo.
Ecología. Ha sido registrada en ecosistemas eutróficos (Komárek & Anagnostidis, 2005). En este estudio ocurrió bajo las siguientes condiciones: pH: 8,54, conductividad: 0,05 mS.cm-1, nitrato: 0,11 mgNO3 -.L-1, nitrito: 0,004 mgNO2 -.L-1, amonio: 0,01 mgNH4.L-1 fosfato: <0,01 mgPO4 -3.L-1.
Se menciona como productora de floraciones y como productora de microcistina (Chaturvedi, 2015).
Conclusiones
El género Sphaerocavum y las especies P. galeata y P. voronichinii halladas en este estudio se citan por primera vez para Colombia. En el ciclo de estudio, Microcystis y Radiocystis fueron los géneros más frecuentes y ocurrieron en todas las campañas de muestro. Por ese motivo, sugerimos que tal vez dichos organismos corresponden con las manchas verdes de algas observadas en el embalse. Estas especies han sido reconocidas por su potencial tóxico y han sido reportadas como productoras de cianotoxinas.
Las cianobacterias lograron desarrollarse bajo condiciones de pH neutro y bajas concentraciones de nitrógeno inorgánico disuelto y de fosfato, a causa de las características climatológicas de la región. El embalse se encuentra expuesto constantemente a altas incidencias lumínicas y a moderadas temperaturas, lo cual, sumado al enriquecimiento artificial con nutrientes, hace propicio el desarrollo de las cianobacterias en la zona de estudio. Esto es revelado por las características limnológicas, que muestran aguas verdosas poco transparentes, pero de pH neutro y bajas concentraciones de nitrógeno inorgánico disuelto y de fosfato. Estas características se dan posiblemente por la rápida asimilación por parte del fitoplancton eucariótico y de las cianobacterias.