Clima, ciudades y biodiversidad: revisión de producción científica

Resumen (es):

Instituciones internacionales han resaltado la necesidad de generar conocimiento entorno a la biodiversidad urbana, sus interacciones ecológicas y los efectos del cambio climático, sin embargo, son pocas las ciudades las que lo han hecho. El objetivo de este artículo fue determinar el estado del arte sobre las relaciones clima y biodiversidad urbana a nivel nacional e internacional. Se realizó una búsqueda bibliográfica por Scopus y en las bases de datos de las principales instituciones de Colombia. A nivel internacional se encontraron 725 publicaciones y a nivel nacional 115. Se encontró una tendencia de aumento en el número de publicaciones en los últimos 20 años. A nivel internacional la mayoría de estudios fueron realizados en Europa y el 86 % de las publicaciones se enfocaron en plantas en espacios verdes y bosques urbanos. En Colombia, la mayoría de la información proviene de trabajos de grado y el 45 % se concentraron en la caracterización de especies. Son pocas las publicaciones que han evaluado el impacto del cambio climático en la biodiversidad, especialmente a nivel nacional. Se requiere el desarrollo de una agenda interinstitucional para el estímulo de investigaciones en torno a la biodiversidad urbana y su funcionamiento en escenarios de cambio climático.

Resumen (en):

International institutions have highlighted the necessity to generate knowledge about urban biodiversity, their ecological interactions and the effects of climate change. However, these knowledge remains unknown for the majority of cities around the world. The aim of this study was to determine what information has been produced in relation to climate and urban biodiversity nationally and internationally. We conducted a literature search using Scopus and databases of national universities and research institutes. We found 725 publications internationally and 115 publications in Colombia. We found an increase in the number of publications regarding urban biodiversity in the last 20 years. Internationally, most studies were conducted in Europe and 86 % of the publications focused on the study of plants in green areas and urban forests. In Colombia, almost half of the publications compiled were undergraduate theses and in general 45 % of publications focused on characterizations of species in urban ecosystems. Governmental institutions need to develop strategies that encourage research towards urban biodiversity and their ecological functions in climate change scenarios.

Palabras clave:

Centro urbano, Coberturas vegetales urbanas, Diversidad biológica, Producción científica (es)

Biological diversity, Climate variability, Scientific production, Urban center, Urban plant covers (en)

Visitas

1431

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Ainsworth, E.A. y Long, S.P. (2005). Tansley review: what have we learned from 15 Years of Free-Air CO2 Enrichment (FACE)? A meta-analytic review of the re- sponses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-371.

Alberti, M., Marzluff, J. y Hunt, V. M. (2017). Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. Philosophical Transactions of the Royal Society B, 372, 20160029.

Alvey, A. A. (2006) Promoting and preserving biodiversity in the urban forest. Urban For Urban Green, 5(4), 195-201.

Andrade, G. I., Sandino, J. C., Aldana, J. (2011). Biodiversidad y territorio: innovación para la gestión adaptativa frente al cambio global, insumos técnicos para el Plan Nacional para la Gestión Integral de la Biodiversidad y los Servicios Ecosistémicos. Bogotá: MAVDT y IAvH. 64p.

Angilletta, Jr., M. J., Wilson, R. S., Niehaus, A. C., Sears, M. W., Navas, C. A. y Ribeiro, P. L. (2007). Urban Physiology: City Ants Possess High Heat Tolerance. PLOS One, 2, e258.

Awal, M. A., Ikeda, T. y Itoh, R. (2003). The effect of soil temperature on source-sink economy in peanut (Arachis hypogaea). Environmental and Experimental Botany, 50, 41-50.

Bai, X., Dawson, R. J., Ürge-Vorsatz, D., Delgado, G. C., Barau, A. S., Dhakal, S., Dodman, D., Leonardsen, L., Masson-Delmotte, V., Roberts, D., Schultz, S. (2018). Six research priorities for cities and climate change. Nature, 555, 23-25.

Balasubramanian, S., Sureshkumar, S., Lempe, J. y Weigel, D., (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoSGenet, 2, 0980-0989.

Bita, C. E. y Gerats, T. (2013). Plant tolerance to high temperature in a changing en- vironment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci, 4, 273.

Campbell-Arvai, V. (2018). Engaging urban nature: improving our understanding of public perceptions of the role of biodiversity in cities. Urban Ecosystems, 1-15. doi.org/10.1007/s11252-018-0821-3.

Carvalho, B. M., Rangel, E. F y Vale, M. M. (2017). Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bulletin of Entomological Research, 107, 419-430.

Chambers, L. E., Hughes, L. y Weston, M. A. (2005). Climate change and its impact on Australia’s avifauna. EmuAustral Ornithology, 105(1), 1-20. doi:10.1071/mu04033

Chen, I.C., Hill, J. K., Ohlemüller, R., Roy, D. B. y Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. doi: 10.1126/science.1206432.

Chenchouni, H. (2017). Variation in white stork (Ciconia ciconia) diet along a climatic gradient and across rural-to-urban landscapes in North Africa. International journal of biometeorology, 61(3), 549-564.

Clauw, P., Coppens, F., De Beuf, K., Dhondt, S., Van Daele, T., Maleux, K., Storme, V., Clement, L., Gonzalez, N. y Inzé, D. (2015). Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiology, 167, 800-816.

Connop, S., Vandergert, P., Eisenberg, B., Collier,M.J., Nash, C., Clough, J. y Newport, D. (2016). Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environmental Science & Policy, 62, 99-111.

Cregg, B. M. y Dix, M. E. (2001). Tree moisture stress and insect damage in urban areas in relation to heat island effects. Journal of Arboriculture, 27(1), 1-17.

Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2, 45-65.

Dale, A. G. y Frank, S. D. (2017) Warming and drought combine to increase pest insect fitness on urban trees. PLoS One, 12, e0173844.

Dale, A. G. y Frank, S. D. (2014 a). The Effects of Urban Warming on Herbivore Abundance and Street Tree Condition. PLoS One, 9(7), e102996.

Dale, A. G. y Frank, S. D. (2014 b) Urban warming trumps natural enemy regulation of herbivorous pests. Ecological Applications, 24(7), 1596-1607.

DeLucia, E. H., Nabity, P. D., Zavala, J. A. y Berenbaum, M. R. (2012) Climate Change: Resetting Plant-Insect Interactions. Plant Physiology, 160, 1677-1685.

Diamond, S. E., Cayton, H., Wepprich, T., Jenkins, C. N., Dunn, R. R., Haddad, N. M. y Ries, L. (2014) Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology, 95, 2613-2621.

Diamond, S. E., Dunn, R. R., Frank, S. D., Haddad, N. M. y Martin, R. A. (2015) Shared and unique responses of insects to the interaction of urbanization and background climate. Current Opinion in Insect Science, 11, 71-77.

Engineer, C. B., Ghassemian, M., Anderson, J. C., Peck, S. C., Hu, H. y Schroeder, J. I. (2014). Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 513, 246-250.

Feria Arroyo, T. P., Sánchez-Rojas, G., Ortiz-Pulido, R., Bravo-Cadena, J., Calixto Pérez, E., Dale, J. M., y Valencia-Herverth, J. (2013). Estudio del cambio climático y su efecto en las aves en México: enfoques actuales y perspectivas futuras. Huitzil, 14(1), 47-55.

Forister, M. L., McCall, A. C., Sanders, N. J., Fordyce, J. A., Thorne, J. A. y O'Brien, J., (2010). Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proceedings of the National Academy of Sciences U.S.A., 107, 2088-2097. doi: 10.1073/pnas.0909686107.

Franco, L., Useche, D.C. y Hernández, S. (2013). Biodiversidad y cambio antrópico del clima: ejes temáticos que orientan la generación de conocimiento para la gestión frente al fenómeno. Ambiente y Desarrollo, 17(32), 79-96.

Garret, K., Nita, M., Wolf, E., Esker, P., Gomez-Montano, L. y Sparks, A. (2016). Plant pathogens as indicators of climate change. Climate Change, 325-338.

Granier, C., Massonnet, C., Turc, O., Muller, B., Chenu, K. y Tardieu, F. (2002). Individual leaf development in Arabidopsis thaliana: a stable thermal-time-based pro- gramme. Annals of Botany, 89, 595-604.

Gray, S. y Brady, S. (2016). Plant developmental responses to climate change. Developmental Biology, 419, 64-77.

Graves, W. R. (1994) urban soil temperatures and their potential impact on tree growth. Journal of Arboriculture, 20(1), 24-27.

Gregg, J. W., Jones, C. G., & Dawson, T. E. (2003). Urbanization effects on tree growth in the vicinity of New York City. Nature, 424(6945), 183.

Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhoffer, K. J., Pataki, D. E. y Peter, D.P.C. (2008). The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and Environment, 6(5), 264-272.

Güneralp, B. y Seto, K. C. (2013). Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environmental Research Letters, 8, 014025.

Hagen, K. y Stiles, R. (2010). Contribution of landscape design to changing urban climate conditions. En Müller, N., Werner, P., Kelcev, J. G. (Eds.). Urban Biodiversity and Design. Pp. 572–592. Oxford: Wiley-Blackwell.

Hamblin, A.L., Youngsteadt, E., López-Uribe, M. M. y Frank, S. D. (2017). Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biology Letters, 13, 20170125.

Hamerlynck, E. P., Huxman, T. E., Loik, M. E. y Smith, S. D. (2000) Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecology, 148, 183-193.

Harrison, T y Winfree, R. (2015). Urban drivers of plant-pollinator interactions. Functional Ecology, 29, 879-888.

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M. y Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agrononomy Journal, 103, 351-370.

Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9-16.

Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A-L. y Totlan, O. (2009). How does climate warming affect plant-pollinator interactions?. Ecology Letters, 12, 184-195.

Hevia, V., Berta Martín-López, B., Palomo, S., García-Llorente, M., de Bello, F. y González, J. A. (2017). Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecology and Evolution, 7, 831-844.

Hoover, S. E. R., Ladley, J. J., Shchepetkina, A. A., Tisch, M., Gieseg, S. P. y Tylianakis, J. M. (2012). Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecology Letter, 15, 227-234.

IPCC (2014). Climate change: Impacts, Adaptation and Vulnerability. Working Group II. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. En Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. y White, L. L. (Eds.) Cambridge, United Kingdom y New York, USA: Cambridge University Press.

Jablonski, L. M., Wang, X. y Curtis, P. S. (2002). Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytology, 156, 9-26.

Jarma Orozco, A., Cardona Ayala, C., Araméndiz Tatis, H. (2012). Efecto del cambio climático sobre la fisiología de las plantas cultivadas: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 15(1), 63 -76.

Jenerette, G. D., Clarje, L. W., Avolio, M. L., Pataki, D. E., Gillespie, T. W., Pincetl, S., Nowak, D. J., Hutyra, L. R., McHale, M., McFadden, J. P., Alonzo, M. (2016). Climate tolerances and trait choices shape continental patterns of urban tree biodiversity. Global Ecology and Biogeography, 25(11), doi.org/10.1111/geb.1249.

Jungvist, G., Oni, S. K., Teutschbein, C. y Futter, M. N. (2014). Effect of climate change on soil temperature in Swedish boreal forests. PLoS One, 9(4), e93957.

Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., Stadler, J., Zaunberger, K. y Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2), 39.

Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. y Pfenninger, M. (2014). Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proceedings of the Royal Society B: Biological Sciences, 281(1789), 20141097.

Kühn, I., Brandl, R. y Klotz, S. (2004). The flora of German cities is naturally species rich. Evolutionary Ecology Research, 6(5), 749-764.

Lambrecht, S. C., Mahieu, S. y Cheptou, P. O. (2016). Natural selection on plant physiological traits in an urban environment. Acta Oecologica (77), 67-74.

Laurance, WF., Useche, D.C., Laurance, S. y Bradshaw, C.J.A. (2013). Predicting Publication Success for Biologist. BioScience, 63(10), 817-823.

Liu, J., Zhou, G., Xu, Z., Duan, H., Li, Y. y Zhang, D. (2011) Photosyntesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. Journal of Soils Sediments, 11, 1155-1164.

López-Vélez, R. y Molina Moreno, R. (2005). Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. Revista Española de Salud Pública, 79, 177-190.

Madhu, M. y Hatfield, J. L. (2013). Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 105, 657-669.

Mainwaring, M. C. (2015). The use of man-made structures as nesting sites by birds: a review of the costs and benefits. Journal for Nature Conservation, 25, 17-22. doi:10.1016/j.jnc.2015.02.007

Meineke, E., Youngsteadt, E., Dunn, R. R. y Frank, S. D. (2016). Urban warming reduces aboveground carbon storage. Proceedings Royal Society B, 283, 20161574.

Meineke, E. K., Dunn, R. R., Frank, S. D. (2014). Early pest development and loss of biological control are associated with urban warming. Biology Letters, 10, 2-4.

Meineke, E. K., Dunn, R. R., Sexton, J. O. y Frank, S. D. (2013). Urban warming drives insect pest abundance on street trees. PLoS One, 8, e59687.

Mejía, M. A. (Ed.). (2016). Naturaleza Urbana: plataforma de experiencias. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 208 p.

Misslin, R., Telle, O., Daudé, E., Vaguet, A. y Paul, R. E. (2016). Urban climate versus global climate change – what makes the difference for dengue? Annals of the New York Academy of Sciences, 1382(1), 56-72.

Moreno-Echeverry, D., Useche, D. C. y Balaguera-Lopez, H. (2019). Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá. Colombia Forestal, 22(1). doi.org/10.14483/2256201X.13453

Müller, N y Werner, P. (2010). Urban biodiversity and the case for implementing the convention on biological diversity in towns and cities. En Muller, N., Werner, P y Kelcey, J. G. (Eds.). Urban Biodiversity and Design. Pp. 1-32. Blackwell Publishing Ltd.

Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A.D.B., Bloom, A. J., Carlisle, E., Dietterich, L. H., Fitzgerald, G., Hasegawa, T., Holbrook, N. M., Nelson, R. L., Ott- man, M. J., Raboy, V., Sakai, H., Sartor, K.A., Schwartz, J., Seneweera, S., Tausz, M. y Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature 510, 139-142.

Nagel, K. A., Kastenholz, B., Jahnke, S., Van Dusschoten, D., Aach, T., Mühlich, M., Truhn, D., Scharr, H., Terjung, S., Walter, A. y Schurr, U. (2009). Temperature re- sponses of roots: Impact on growth, root system architecture and implications for phenotyping. Functional Plant Biology, 36, 947-959.

Neil, K., Wu, J., Bang, C. y Faeth, S. (2015). Urbanization affects plant flowering phenology and pollinator community: effects of water availability and land cover. Ecological Processes, 3, 1-12.

Nowak, D. J. (2010). Urban Biodiversity and climate change. En Müller, N., Werner, P., Kelcey, J. G. (Eds). Urban Biodiversity and Design. Pp: 101-117. Blackwell Publishing.

Organización Meterorológica Mundial. (2017). WMO Guidelines on the calculation of climate normals. Geneva, Switzerland: World Meteorological Organization. 20 p.

Pedersen, M. (2018). The importance of urban biodiversity-an ecosystem services approach. Biodiversity International Journal, 2(4), 357-360.

Rastandeh, A., y Zari, M. P. (2018). A spatial analysis of land cover patterns and its implications for urban avifauna persistence under climate change. Landscape Ecology, 33(3), 455-474.

Raupp, M.J., Shrewsbury, P. M. y Herms, D.A. (2010). Ecology of herbivorous arthropods in urban landscapes. Annual Review of Entomology, 55, 19-38.

Reiner, Jr. R.C., Smith, D. L. y Gething, P. W. (2015). Climate change, urbanization and disease: summer in the city. Transactions of the Royal Society of Tropical Medicine and Hygiene, 109, 171-172.

Rellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.L., Sebastian, J., Yee, M.C., Geng, Y., Trontin, C., Larue, T., Schrager-Lavelle, A., Haney, C. H., Nieu, R., Maloof, J., Vogel, J. P. y Dinneny, J. R. (2015). GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife, 4, 1-26.

Rizhsky, L., Liang, H. y Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in Tobaco. Plant Physiology, 130, 1143-1151.

Rizhsky, L., Liang, H. y Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in Tobaco. Plant Physiology, 130, 1143-1151.

Rosselli, L., Stiles, F. G. y Camargo, P. A. (2017). Changes in the avifauna in a high Andean cloud forest in Colombia over a 24‐year period. Journal of Field Ornithology, 88(3), 211-228.

Searle, S. Y., Turnbull, M. H., Boelman, N. T., Schuster, W. S. F., Yakir, D. y Griffin, K. L. (2012) Urban environment of New York City promotes growth in northem red oak seedlings. Tree Physiology, 32, 389- 400.

Solecki, W. y Marcotullio, P.J. (2013). Climate change and urban biodiversity Vulnerability. En Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., Wilkinson, C. (Eds). Urbanization, Biodiversity and Ecosystem Services: challenges and opportunities. Pp: 485-504. Dordrecht: Springer.

Springer, C. J. y Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176, 243-255.

Stiles, F. G., Rosselli, L. y De La Zerda, S. (2017). Changes over 26 Years in the Avifauna of the Bogotá Region, Colombia: Has Climate Change Become Important?. Frontiers in Ecology and Evolution, 5, 58.

Su, Z., Ma, X., Guo, H., Sukiran, N. L., Guo, B., Assmann, S. M. y Ma, H. (2013). Flower development under drought stress: morpholical and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell, 25, 3785-3807.

Sukopp, H. y Wurzel, A. (2003). The effects of climate change on the vegetation of Central European Cities. Urban Habitats, 1(1), 66-86.

Supe, G. N. y Gawande, S. M. (2013) Effects of dustfall on vegetation. International Journal of Science and Research, 2184-2188.

Taylor, L. y Hochuli, D.F. (2014). Creating better cities: how biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban Ecosystem. doi:10.1007/s11252-014-0427-3.

Tobolka, M, Zolnierowicz, K.M. y Reeve, N.F. (2015). The effect of extreme weather events on breeding parameters of the White Stork Ciconia ciconia. Bird Study, 62, 377-385. doi: 10.1080 /00063657.2015.1058745.

Tryjanowski, P. y Kuźniak S. (2002). Population size and productivity of the White Stork Ciconia ciconia in relation to Common Vole Microtus arvalis density. Ardea, 90, 213-217.

Tryjanowski, P., Sparks, T. H., Profus, P. (2009). Severe flooding causes a crash in production of white stork (Ciconia ciconia) chicks across central and Eastern Europe. Basic and Applied Ecology, 10, 387-392. doi:10.1016/j.baae.2008.08.002

Tubby, K. V. y Webber, J. F. (2010). Pest and diseases threatening urban trees under a changing climate. Forestry, 83(4), 451-459.

Ugolini, F., Busotti, F., Lanini, G. M., Raschi, A., Tani, C. y Tognetti, R. (2012). Leaf gas Exchanges and photosyntem efficiency of the holm oak in urban green areas of Florence, Italy. Urban Forestry & Urban Greening, 11, 313-319.

United Nations. (2014). World urbanizations prospects: the 2014 revision population database. New York: United Nations. http://esa.un.org/unup/

Urbina-Cardona, J. N. (2016). Gradientes andinos en la diversidad y patrones de endemismo en anfibios y reptiles de Colombia: posibles respuestas al cambio climático. Revista Facultad de Ciencias Básicas, 7(1), 74-91.

Useche, D.C. (2010). Biodiversidad: cimiento de nuestra capacidad para enfrentar el cambio climático. En García M. P., Amaya O. D. (Eds). Derecho y cambio climático. Pp. 93-122. Bgootá: Universidad Externado de Colombia.

Van Der Jeugd, H. P., Eichhorn, G., Litvin, K. E., Stahl, J., Larsson, K., Van Der Graaf, A. J., Drent, R. H. (2009). Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Global Change Biology, 15, 1057-1071. doi:10.1111/j.1365-2486.2008.01804.

Velásquez, A., Danve, C. y Yang, S. (2018). Plant-Pathogen warfare under changing climate conditions. Current Biology, 28(10), 619-634

Wang, X-M., Wang, X-K., Su, Y-B., Zhang, H-X. (2019). Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment, 653, 120-130.

Wilby, R. L., Perry, G. L. W. (2006). Climate change, biodiversity and the urban environment: a critical review based on London, UK. Progress in Physical Geography, 30(1), 73-98.

Wilmers, F. (1988). Green for melioration of urban climate. Energy and Buildings, 11(1), 289-299.

Cómo citar

Useche, D. C., Durán-Prieto, J., Zárate Caballero, I. A., Moreno-Echeverry, D. L., Velásquez, L., & Camargo, P. A. (2019). Clima, ciudades y biodiversidad: revisión de producción científica. Biodiversidad En La Práctica, 4, 212–237. Recuperado a partir de https://revistas.humboldt.org.co/index.php/BEP/article/view/709

Las obras publicadas en las revistas del Instituto de Investigación de Recursos Biológicos Alexander von Humboldt están sujetas a los siguientes términos, con relación al derecho de autor: 

1. Los derechos patrimoniales de las obras publicadas tienen como titular al Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Los autores o las instituciones que elaboran el documento aceptan ceder los derechos patrimoniales al Instituto Humboldt con el envío de sus artículos, lo que permite –entre otras cosas­– la reproducción, comunicación pública, difusión y divulgación de las obras.

2. Las obras de ediciones digitales se publican bajo una licencia de Creative Commons Colombia:

Licencia de Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Atribución – No comercial – Sin Derivar: Esta licencia es la más restrictiva de las seis licencias principales, sólo permite que otros puedan descargar las obras y compartirlas con otras personas, siempre que se reconozca su autoría, pero no se pueden cambiar de ninguna manera ni se pueden utilizar comercialmente.

3. Los autores, al someter artículos al proceso editorial de las revistas editadas por el Instituto Humboldt, aceptan las disposiciones institucionales sobre derechos de autor y acceso abierto.

4. Todos los artículos recibidos serán sometidos a un software antiplagio. El sometimiento de un artículo a las revistas del Instituto Humboldt se entiende como la aceptación de la revisión para detectar posible plagio.

5. Las obras sometidas al proceso de edición de las revistas del Instituto Humboldt deben ser inéditas.