Conocimiento científico de los efectos del cambio climático sobre la biodiversidad continental: productividad de las instituciones colombianas y propuesta para un análisis integral

Resumen (es):

Conocer los efectos del cambio climático (CC) sobre la biodiversidad es complejo pues diferentes escalas de biodiversidad, interacciones, fenología, asincronías y escalas espaciales están implicadas. Revisar las publicaciones sobre la relación entre CC y biodiversidad permite identificar las áreas de conocimiento e instituciones que aportan al entendimiento del tema. De los 65,169 documentos encontrados en las bases de datos revisadas, más del 70 % fueron publicados en los últimos 8 años. Alrededor de 20 instituciones colombianas (304 publicaciones) han producido nuevo conocimiento en el tema y en los últimos 8 años han incrementado el número de áreas de conocimiento trabajadas, de 23 a 40 áreas. Las instituciones colombianas han colaborado con hasta 500 instituciones en todo el mundo para producir nuevos conocimientos sobre el tema. En la presente reflexión se propone estudiar los efectos del CC sobre la biodiversidad continental en 5 niveles y se plantea un diagrama conceptual para su integración: 1. Desplazamiento geográfico en distribución de especies; 2. Cambios fenológicos: migración, floración y reproducción de individuos; 3. Modificaciones en la morfología, tamaño corporal y comportamiento en poblaciones; 4. Modificación de la estructura de comunidades; 5. Modificación en las interacciones bióticas. Por último, se plantean retos de estudio e interacción científica, se evidencian sinergias entre los temas de investigación y se proponen elementos clave para la construcción de indicadores.

Resumen (en):

Understanding the effects of climate change (CC) on biodiversity is complex because it involves multiple scales of biodiversity, biotic interactions, phenology, asynchronies, and spatial scales. By reviewing publications on the relationship between CC and biodiversity, the areas of knowledge and institutions that contribute to understanding the subject were identified. We found 65,169 documents in peer-review literature databases, of which more than 70% were published in the last eight years. About 20 Colombian institutions (304 publications) have produced new knowledge on the subject, and in the last eight years have increased the number of knowledge areas worked, from 23 to 40 areas. Colombian institutions have collaborated with up to 500 institutions globally to produce new knowledge on the subject. In this work we propose five levels to understand the effects of CC on continental biodiversity and a conceptual diagram for their integration: (1) Geographic displacement in the distribution of species, (2) Changes in phenology: migration, flowering, and reproduction of individuals, (3) Modifications in morphology, body size and behavior in populations, (4) Modification of the structure of communities, and (5) Modification of biotic interactions. Finally, we identify challenges for the scientific research for understanding the effects of CC on biodiversity, evidence synergies between research topics, and propose key monitoring elements for the construction of indicators.

Palabras clave:

Bibliometría, Cambio global, Comunidades bióticas, Distribución de especies, Estructura de comunidades, Fenología de especies, Interacciones bióticas, Rasgos de historia de vida (es)

Bibliometrics, Biotic communities, Biotic interactions, Community structure, Global change, Life history traits, Species distribution, Species phenology (en)

Visitas

2037

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Agrios, G. N. (2005). Introduction to plant pathology. Elsevier Academic Press Publication.

Araújo, M. B., Nogués-Bravo, D., Diniz-Filho, J. A. F., Haywood, A. M., Valdes, P. J. y Rahbek, C. (2008). Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31(1), 8-15.

Barnosky, A. D., Hadly, E. A., y Bell, C. J. (2003). Mammalian response to global warming on varied temporal scales. Journal of Mammalogy, 84(2), 354-368.

Beebee, T. J. C. (1995). Amphibian breeding and climate. Nature 374:219-220.

Beaudrot, L., Ahumada, J., O’Brien, T., Álvarez-Loayza, P., Boekee, K., Campos-Arceiz, A., Eichberg, D., Espinosa, S., Fegraus, E., Fletcher, C., Gajapersad, K., Hallam, C., Hurtado, J., Jansen, P.A., Kumar, A., Larney, E., Lima,G. M. M., Mahony, C., Martin, E. H., McWilliam, A., Mugerwa, B., Ndoundou-Hockemba, M., Razafimahaimodison, J. C., Romero-Saltos, H., Rovero, F., Salvador,J., Santos, F., Sheil, D., Spironello, W. R., Willig, M. R., Winarni, N. L., Zvoleff, A. y Andelman, S. J. (2016). Standardized assessment of biodiversity trends in tropical forest protected areas: the end is not in

sight. PLoS Biology, 14(1), e1002357.

Beckage, B., Osborne, B., Gavin, D. G., Pucko, C., Siccama, T. y Perkins, T. (2008). A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences, 105(11), 4197-4202.

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. y Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology letters, 15(4), 365-377.

Bhattarai, U. (2017). Impacts of climate change on biodiversity and ecosystem services: direction for future research. Hydro Nepal, 20, 41-48.

Blaustein, A. R., Belden, L. K., Olson, D. H., Green, D. M., Root, T. L. y Kiesecker, J. M. (2001). Amphibian breeding and climate change. Conservation Biology, 15(6), 1804- 1809.

Bonino, M. F., Azócar, D. L. M., Schulte II, J. A., Abdala, C. S. y Cruz, F. B. (2015). Thermal sensitivity of cold climate lizards and the importance of distributional ranges. Zoology, 118(4), 281-290.

Both, C., Bouwhuis, S., Lessells, C. M. y Visser, M. E. (2006). Climate change and population declines in a long-distance migratory bird. Nature, 441(7089), 81.

Brook, B. W., Sodhi, N. S. y Bradshaw, C. J. (2008). Synergies among extinction drivers under global change. Trends in ecology & evolution, 23(8), 453-460.

Buckland, S. T., Magurran, A. E., Green, R. E. y Fewster, R. M. (2005). Monitoring change in biodiversity through composite indices. Philosophical Transactions of the Royal Society B: Biological Sciences. 360(1454), 243-254.

Calder, W. A. (1996). Size, function, and life history. Courier Corporation.

Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., Paolini, L., Pugnaire, F. I., Newingham, B., Aschehoug, E. T., Armas, C., Kikodze, D. y Cook, B. J. (2002) Positive interactions among alpine plants increase with stress. Nature, 417, 844-848.

Carvajal-Cogollo, J. E., Bernal-González, V., Paternina-Hernández, A., Muñoz-Ávila, J. A., Urbina-Cardona, J. N. y Vargas-Salinas, F. (2019). Reglas de ensamblaje en anfibios y reptiles en bosque seco tropical de la región Caribe de Colombia: patrones y mecanismos. En: Anfibios y reptiles en bosques secos del caribe colombiano. UPTC - UniQuindio- Ecopetrol.

Chan, K. S., Mysterud, A., Øritsland, N. A., Severinsen, T. y Stenseth, N. C. (2005). Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population. Oecologia, 145(4), 556-563.

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. y Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-1026.

Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. y Longino, J. T. (2008). Global Warming Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 322:258-261.

Daufresne, M., Lengfellner, K. y Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788- 12793.

Debruyne, R., Chu, G., King, C. E., Bos, K., Kuch, M., Schwarz, C., Szpak, P., Gröcke, D. R., Matheus, P., Zazula, G.,Guthrie, D.,Froese, D., Buigues, B., de Marliave, C., Flemming, C., Poinar, D., Fisher, D., Southon, J.,Tikhonov, A. N., MacPhee, R. D. y Poinar, H. N. (2008). Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Current Biology, 18(17), 1320-1326.

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. y Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668-6672.

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. y Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401-406.

Dunn, C. W., Giribet, G., Edgecombe, G. D. y Hejnol, A. (2014). Animal phylogeny and its evolutionary implications. Annual review of ecology, evolution, and systematics, 45, 371-395.

Fernández, M. H. y Peláez-Campomanes, P. (2005). Quantitative palaeoclimatic inference based on terrestrial mammal faunas. Global Ecology and Biogeography, 14(1), 39-56.

Fiedler, W. (2003). Recent changes in migratory behaviour of birds: a compilation of field observations and ringing data. En Avian migration (pp. 21-38). Berlín, Heidelberg, Springer.

Foden, W. B., Pacifici M. y Hole, D. (2016). Setting the scene. En: Foden, W. B. y Young, B. E. (Eds.) (2016). IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Version 1.0. Occasional Paper of the IUCN Species Survival Commission No. 59. Cambridge, UK and Gland, Switzerland: IUCN Species Survival Commission.

Forero-Medina, G., Joppa, L. y Pimm, S. L. (2011). Constraints to species’ elevational range shifts as climate changes. Conservation Biology, 25(1), 163-171.

Gao, X., Jin, C., Camargo, A. y Li, Y. (2015). Allocation trade-off under climate warming in experimental amphibian populations. PeerJ, 3, e1326.

Gao, J., Barzel, B. y Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307.

Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. y Heinsohn, R. (2011). Declining body size: a third universal response to warming?. Trends in ecology & evolution, 26(6), 285-291.

Garrett, K. A., Nita, M., De Wolf, E. D., Esker, P. D., Gómez-Montano, L. y Sparks, A. H. (2016). Plant pathogens as indicators of climate change. En Climate Change (pp. 325- 338). Elsevier.

Gingerich, P. D. (2006). Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in ecology & evolution, 21(5), 246-253.

Graham, C. H., Parra, J. L., Rahbek, C. y McGuire, J. A. (2009). Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19673-19678.

Green, D. M. (2017). Amphibian breeding phenology trends under climate change: Predicting the past to forecast the future. Global change biology, 23(2), 646-656.

Hernández-Ordóñez, O., Santos, B., Pyron, A. Arroyo-Rodríguez, V., Urbina-Cardona, J. N., Parra, G. y Reynoso, V. (2019). Species sorting and mass effect along forest succession: evidence from taxonomic, functional, and phylogenetic diversity of amphibian communities. Ecology and Evolution en prensa.

Hof, C., Araujo, M. B., Jetz, W. y Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480(7378), 516.

Hole, D. G., Young, K. R., Seimon, A., Wichtendahl, C. G., Hoffmann, D., Schutze Paez, K., Sanchez, S., Muchoney, D., Grau, H. R. y Ramírez, E. (2011). Adaptive management for biodiversity conservation under climate change -A tropical Andean perspective. En S. K. Herzog, R. Martínez, P. M. Jørgensen y H. Tiessen (Comps.), Climate Change and Biodiversity in the Tropical Andes. São José dos Campos y París: Instituto Interamericano para la Investigación del Cambio Global y Comité Científico sobre Problemas del Medio Ambiente.

Hudson, L. N., Newbold, T., Contu, S., Hill, S. L., Lysenko, I., De Palma, A. y Booth, H. (2017). The database of the Predicts (Projecting responses of ecological diversity in changing terrestrial systems) project. Ecology and Evolution, 7(1), 145-188.

Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez Pérez, H. J. y Garland Jr, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276(1664), 1939- 1948.

Humphries, M. M. (2009). Mammal ecology as an indicator of climate change. In Climate Change (pp. 197-214).

Jezkova, T. y Wiens, J. J. (2016). Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences, 283(1843), 20162104.

Kessler, M., Kluge, J., Hemp, A. y Ohlemüller, R. (2011). A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography, 20(6), 868-880.

Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in ecology & evolution, 22(11), 569-574.

Kosydar, A. J., Conquest, L. L. y Tewksbury, J. J. (2014). Can life histories predict the effects of habitat fragmentation? A meta-analysis with terrestrial mammals. Appl. Ecol. Environ. Res, 12, 505-521.

Laurance, W. F., Oliveira, A. A., Laurance, S. G., Condit, R., Dick, C. W., Andrade, A., Nascimento, H. E. M., Lovejoy, T. E. y Ribeiro, J. E. (2005). Altered tree communities in undisturbed Amazonian forests: A consequence of global change? Biotropica: The Journal of Biology and Conservation, 37(2), 160-162.

Legendre, S., Montuire, S., Maridet, O. y Escarguel, G. (2005). Rodents and climate: a new model for estimating past temperatures. Earth and Planetary Science Letters, 235(1-2), 408-420.

Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H. y Taylor, W. W. (2007). Complexity of coupled human and natural systems. Science, 317(5844), 1513-1516.

Loyola, R. D., Nabout, J. C., Trindade Filho, J., Lemes, P., Cardona, J. N. U., Dobrovolski, R., Sagnori, M.D. y Diniz Filho, J. A. F. (2012). Climate change might drive species into reserves: a case study of the American bullfrog in the Atlantic Forest Biodiversity Hotspot. Alytes, 29(1):61-74.

MacDonald, G. M., Bennett, K. D., Jackson, S. T., Parducci, L., Smith, F. A., Smol, J. P. y Willis, K. J. (2008). Impacts of climate change on species, populations and communities: paleobiogeographical insights and frontiers. Progress in Physical Geography, 32(2), 139-172.

Martínez-Meyer, E., Townsend Peterson, A. y Hargrove, W. W. (2004), Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography, 13: 305-314.

Memmott, J., Craze, P. G., Waser, N. M. y Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. Ecology letters, 10(8), 710-717.

Morecroft, M. D. y Keith, S. A. (2009). Plant ecology as an indicator of climate and global change. En Climate Change (pp. 297-305).

Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C. y Beissinger, S. R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322(5899), 261-264.

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. y Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386:698-701.

Navas, C. A., (1997). Thermal Andes: Extremes at high elevations in the physiological ecology of frogs. Journal of thermal, 22(6), 467-477.

Navas, C. A., Gomes, F. R. y Carvalho, J. E. (2008). Thermal relationships and exercise physiology in anuran amphibians : Integration and evolutionary implications. Comparative biochemistry and physiology, Part A 151, 151, 344-362.

Nori, J., Urbina-Cardona, J. N., Loyola, R. D., Lescano, J. N. y Leynaud, G. C. (2011). Climate change and American bullfrog invasion: what could we expect in South America? PloS one, 6(10), e25718.

Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E., Butchart, S. H., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akcakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E., Willis, S. G., Young, B. y Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change 5:215-225.

Parmesan, C. y Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual review of ecology, evolution and systematics 37:637-69.

Pecl, G. T., Araujo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengard, B., Falconi, L., Ferrier, A., Frusher, A., García, R. A., Griffis, R. A., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir, J., Linnetved, H. I., Martin, V. Y., McCormack, P. C., McDonald, J., Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E., Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell, J. M., Sunday, J. M., Tuanmu, M. N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E. y Williams S. E. (2017).

Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214.

Pfeifer, M. (2014). BIOFRAG – a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecology and Evolution 4(9):1524–1537.

Pfeifer, M., Lefebvre, V., Peres, C. A., Banks-Leite, C., Wearn, O. R., Marsh, C. J., Butchart, S. H. M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D’Cruze, N., Faria, D., Hadley, A., Harris, S. M., Klingbeil, B. T., Kormann, U., Lens, L., Medina-Rangel, G. F., Morante-Filho, J. C., Olivier, P., Peters, S. L., Pidgeon, A., Ribeiro, D. B., Scherber, C., Schneider-Maunoury, L., Struebig, M., Urbina-Cardona, N., Watling, J. I., Willig, M. R., Wood, E. M. y Ewers R. M. (2017). Creation of forest edges has a global impact on

forest vertebrates. Nature, 551(7679), 187.

Phillips, O. L., Lewis, S. L., Baker, T. R., Chao, K. J. y Higuchi, N. (2008). The changing Amazon forest. Philosophical Transactions of the Royal Society B: Biological Sciences.

Pounds, J. y M. Crump. (1994). Amphibian declines and climatic disturbance: the case of the golden toad and the harlequin frog. Conservation Biology 8: 72-85

Pounds, A. J., Fogden, M. P. L. y Cambell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398: 611-615.

Pounds, J. A., Fogden, M. P. L. y Masters, K. L. (2005). Responses of natural communities to climate change in a highland tropical forest. En Lovejoy, T. E.y L. Hanna. (Eds.). Climate Change and Biodiversity. Yale Univ. Press, New Haven,U.S.A. 70-74.

Purvis, A., Gittleman, J. L., Cowlishaw, G. y Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the royal society of London. Series B: Biological Sciences, 267(1456), 1947-1952.

Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology letters, 8(2), 224-239.

Reading, C. J. (2007). Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia, 151(1), 125-131.

Richardson, W. J. (1978) Timing and amount of bird migration in relation to weather: a review. Oikos, 30, 303-310.

Rodríguez-Trelles, F. y Rodríguez, M. A. (1998). Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evolutionary Ecology, 12(7), 829-838.

Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B. y Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. En Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P.J., Hanson, C.E. (Eds.), Climate Change. (2007). Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the

intergovernmental panel on climate change. Cambridge UP, Cambridge, UK, 79-131.

Ruiz-Aravena, M., González-Méndez, A., Estay, S. A., Gaitán-Espitia, J. D., Barria-Oyarzo, I., Bartheld, J. L. y Bacigalupe, L. D. (2014). Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecology and Evolution doi: 10.1002/ece3.1315

Shapiro, B., Drummond, A. J., Rambaut, A., Wilson, M. C., Matheus, P. E., Sher, A. V., Pybus, O.G., Thomas, M., Gilbert, P., Barnes, I., Binladen, J., Willerslev, E., Hansen,A. J.,. Baryshnikov, G.F., Burns,J A., Davydov, S., Driver, J. C., Froese, D. G., Harington, C. H., Keddie, G., Kosintsev, P., Kunz, M. L., Martin, L. D., Stephenson, R. O., Storer, J., Tedford, R., Zimov, S. y Cooper, A.. (2004). Rise and fall of the Beringian steppe bison.

Science, 306(5701), 1561-1565.

Sekercioglu, C. H., Schneider, S. H., Fay, J. P. y Loarie, S. R. (2008). Climate change, elevational range shifts, and bird extinctions. Conservation biology, 22(1), 140-150.

Sekercioglu, C. H., Primack, R. B., y Wormworth, J. (2012). The effects of climate change on tropical birds. Biological Conservation, 148(1), 1-18.

Seimon, T. A., Seimon, A., Daszak, P., Halloy, S. R. P., Schloegel, L. M., Aguilar, C. A., Sowell, P., Hyatt, A. D., Konecky, B. y Simmons, J.E. (2007). Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biology, 13: 288-299.

Sinervo, B., Mendez-De la Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Ávila, L. J., Morando, M., De La Riva, I. J., Victoriano, P., Duarte-Rocha,

C. F., Ibargüengoytía, N., Aguilar Puntriano, C., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert, J. y Sites, J. W. Jr. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328(5980), 894-899.

Soberón, J. y Peterson, A. T. (2011). Ecological niche shifts and environmental space anisotropy: a cautionary note. Revista Mexicana de Biodiversidad, 82, 1348-1355.

Suazo-Ortuño, I., Urbina-Cardona, J. N., Lara-Uribe, N., Marroquín-Páramo, J., Soto-Sandoval, Y., Rangel-Orozco, López-Toledo, L., Benítez-Malvido, J. y Alvarado-Díaz, J. (2018).

Impact of a hurricane on the herpetofaunal assemblages of a successional chronosequence in a tropical dry forest. Biotropica. https://doi.org/10.1111/btp.12544

Sundqvist, M. K., Sanders, N. J. y Wardle, D. A. (2013). Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261-280.

Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1514), 467-473.

Tuff, K. T., Tuff, T. y Davies, K. F. (2016). A framework for integrating thermal biology into fragmentation research. Ecology letters, 19(4), 361-374.

Urbina-Cardona, J. N. (2011). Gradientes andinos en la diversidad y patrones de endemismo en anfibios y reptiles de Colombia: Posibles respuestas al cambio climático. Revista de la Facultad de Ciencias Básicas-Universidad Militar Nueva Granada, 7(1),74-91.

Van Dam, J. A., Aziz, H. A., Sierra, M. Á. Á., Hilgen, F. J., van den Hoek Ostende, L. W., Lourens, L. J., Mein, P., van der Meulen, A. J. y Pelaez-Campomanes, P. (2006). Longperiod astronomical forcing of mammal turnover. Nature, 443(7112), 687.

Visser, M. E., Noordwijk, A. V., Tinbergen, J. M. y Lessells, C. M. (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1408), 1867-1870.

Vitousek, P. M., Mooney, H. A., Lubchenco, J. y Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494-499.

Vitt, L. y Caldwell, J. (2013). Herpetology. An introductory biology of amphibians and reptiles. 3ra Edición. Academic Press is an imprint of Elsevier. 698p.

von Humboldt, A. (1849) Aspects of Nature in Different Lands and Different Climates, with Scientific Elucidations. Traductor Sabine, M. Longman, Brown, Green and Longman, London.

Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J-M., Hoegh-GuldbergI, O. y Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416: 389-395

Watling, J. I. y Braga, L. (2015). Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landscape ecology, 30(8), 1449-1459.

Cómo citar

Londoño, M. C., Saboyá, L. P., & Urbina-Cardona, N. (2019). Conocimiento científico de los efectos del cambio climático sobre la biodiversidad continental: productividad de las instituciones colombianas y propuesta para un análisis integral. Biodiversidad En La Práctica, 4, 86–110. Recuperado a partir de https://revistas.humboldt.org.co/index.php/BEP/article/view/685

Las obras publicadas en las revistas del Instituto de Investigación de Recursos Biológicos Alexander von Humboldt están sujetas a los siguientes términos, con relación al derecho de autor: 

1. Los derechos patrimoniales de las obras publicadas tienen como titular al Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Los autores o las instituciones que elaboran el documento aceptan ceder los derechos patrimoniales al Instituto Humboldt con el envío de sus artículos, lo que permite –entre otras cosas­– la reproducción, comunicación pública, difusión y divulgación de las obras.

2. Las obras de ediciones digitales se publican bajo una licencia de Creative Commons Colombia:

Licencia de Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Atribución – No comercial – Sin Derivar: Esta licencia es la más restrictiva de las seis licencias principales, sólo permite que otros puedan descargar las obras y compartirlas con otras personas, siempre que se reconozca su autoría, pero no se pueden cambiar de ninguna manera ni se pueden utilizar comercialmente.

3. Los autores, al someter artículos al proceso editorial de las revistas editadas por el Instituto Humboldt, aceptan las disposiciones institucionales sobre derechos de autor y acceso abierto.

4. Todos los artículos recibidos serán sometidos a un software antiplagio. El sometimiento de un artículo a las revistas del Instituto Humboldt se entiende como la aceptación de la revisión para detectar posible plagio.

5. Las obras sometidas al proceso de edición de las revistas del Instituto Humboldt deben ser inéditas.