Resumen (es):
El presente trabajo colectó, aisló, identificó y caracterizó el potencial antimicrobiano de dos especies filamentosas de cianobacterias de la Amazonia colombiana. Se utilizaron técnicas microbianas de rayado en medio sólido y dilución para obtener las cepas con una sola especie. La identificación se realizó por caracteres morfológicos y secuenciado de la sección conservada Cya de gen 16s. Se identificaron por reacción en cadena de la polimerasa (PCR) la presencia de genes que secuencian policétidos sintasas (PKS) y péptidos no ribosomales sintetasas (NRPS) asociados a rutas productoras de metabolitos secundarios. Se evaluó la actividad antimicrobiana de extractos polares y no polares con una batería Gram positiva, dos Gram negativas y una cepa fúngica. Se identificó la cepa 5 como Limnothrix vacuolifera (Skuja) Komárek y la cepa 9 como Lymnothix planktonica (Wołoszyńska) Meffert. En las dos cepas se encontraron PKS y NRPS. Finalmente, los extractos polares inhibieron el crecimiento de Enterococcus faecalis, Escherichia coli y Klebsiella pneumoniae y una cepa Penicillium sp. Los extractos no polares no mostraron actividad antimicrobiana. Es el primer registro de estas para la Amazonia colombiana y el primer registro de actividad antibiótica de cianobacterias continentales colombianas.
Resumen (en):
In recent years Cyanobacteria have become an important source of secondary metabolites. The present work collected, isolated, identified, and characterized the antimicrobial potential of two filamentous species of cyanobacteria from the Colombian Amazon. Microbial techniques streaking in solid medium and dilution in liquid medium were used to obtain strains with a single species. Identification was performed by morphological characters and sequencing the conserved Cya section of the 16s gene. The presence of genes sequencing polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) associated with secondary metabolite-producing pathways were identified by PCR. The antimicrobial activity of polar and non-polar extracts was evaluated with one Gram-positive and two Gram-negative bacteria and a fungal strain. Strain 5 was identified as Limnothrix vacuolifera (Skuja) Komárek and strain 9 as Lymnothix planktonic (Wołoszyńska) Meffert. In both strains PKS and NRPS were found. Finally polar extracts inhibited the growth of Enterococcus faecalis, Escherichia coli and Klebsiella pneumoniae and one strain Penicillium sp. Non-polar extracts didn’t show antimicrobial activity. This is the first record of these for the Colombian Amazon, and the first record of antibiotic activity of Colombian continental cyanobacteria.
Palabras clave:
Colombian Amazon, antibiotic, antifungal, cyanobacteria, secondary metabolites (en)
Referencias
Abed, R. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of applied microbiology, 106, 1-12. https://doi:10.1111/j.1365-2672.2008.03918.x
Al-Haj, L., Lui, Y., Abed, R., Gomaa, M., & Purton, S. (2016). Cyanobacteria as chassis for industrial biotechnology: Progress and prospects. Life, 6(4), 42. https://doi.org/10.3390/life6040042
Andersen, R. A. (2005). Algal Culturing Techniques. Elsevier Academic Press, 435-436.
Baker, P. (1992). Identification of common noxious cyanobacteria. Part II: Chroococales Oscillatoriales. Urban Water Research Association of Australia. Research Report No. WSAA 46. http://www.fwr.org/wsaa/wsaa46.htm
Bayona, L. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de Cyanobacterias bentónicas arrecifales del Caribe colombiano [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/30357
Berland, B., Le Campion, T., & Campos, H. (1989). Interaction de la salinité et de la température sur la morphologie, la croissance et la composition cellulaire d`une Cyanobactérie halotolerante (Aphanothece sp.). Botanica Marina, 32, 317-329. https://doi.org/10.1515/botm.1989.32.4.317
Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P., Gerwick, W., Vasconcelos, V., Mendes, M., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218-226. https://doi.org/10.1016/j.algal.2015.03.016
Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprokariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69410
Canope, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C., Gunderson, T., Michaels, A. F., & Carpenter, E. J. (2005). Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochemical Cycles, 19(2), 1-17. https://doi.org/10.1029/2004GB002331
Christiansen, G., Dittmann, E., Via Ordorika, L., Rippka, R., Herdman, M., & Börner, T. (2001). Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Archives of Microbiology, 176(6), 52-458. https://doi.org/10.1007/s002030100349
Colla, L. M., Oliveira, R. C., Reichert, C., & Costa, J. A. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98, 1489-1493. https://doi.org/10.1016/j.biortech.2005.09.030
Cunha de Oliveira, E. D., Da Cucha, A. C., Da Silva, N. B., Castelo-Branco, R., Morais, J., Schneider, M. P., Faustino, S., Ramos, V., & Vasconcelos, V. (2919). Morphological and molecular characterization of cyanobacterial isolates from the mouth of the Amazon river. Phytotaxa, 387(4), 269-288. https://doi.org/10.11646/phytotaxa.387.4.1
Cerro, C. (2017). Desarrollo de herramientas moleculares para la producción de Policétidos y Péptidos no Ribosomales [Tesis de doctorado, Universidad Complutense de Madrid]. https://eprints.ucm.es/id/eprint/42730/
El Samak, M., Solyman, S., & Hanora, A. (2018). Antimicrobial activity of bacteria isolated from Red Sea marine invertebrates. Biotechnology Reports, 19, e00275. https://doi.org/10.1016/j.btre.2018.e00275
Fiore, M., Neilan, B. A., Copp, J. L., Tsai, S. M., Lee, H., & Trevors, J. (2005). Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Research, 39, 5017-5026. https://doi.org/10.1016/j.watres.2005.10.002
García-Pichel, F., López-Cortés, A., & Núbel, U. (2001). Phylogenetic and morphological diversity of cyanobacteria in soil desert crust from the Colorado plateau. Applied and Environmental Microbiology, 67, 1902-1910. https://doi.org/10.1128/AEM.67.4.1902-1910.2001
Grewe, C., & Pulz, O. (2912). The biotechnology of cyanobacteria. En Whitton B. (ed.), Ecology of cyanobacteria II: Their diversity in space and time (pp. 707-733). Springer.
Goldblatt, C., Lenton, T. M., & Watson, A. J. (2006). Bistability of atmospheric oxygen and the Great Oxidation. Nature, 443(7112), 683-686. https://doi.org/10.1038/nature05169
Gomes, G. D., Oliveira da Silva, V. C., Xavier, L. P., Do Nascimento, R. B., Faustino, S., Schneider, M., & Santos, A. (2021). Glucosidase inhibitors screening in microalgae and cyanobacteria isolated from the Amazon and proteomic analysis of inhibitor producing Synechococcus sp. GFB01. Microorganisms, 9(8), 1593. https://doi.org/10.3390/microorganisms9081593
González-Gil, S., Aguilera, A., López-Rodas, V., & Costas, E. (1999). Characterization of morphospecies and strains of Pseudanabaena (Cyanophyceae) from laboratory cultures using antibodies and lectins. European Journal of Phycology, 34, 27-33. https://doi.org/10.1080/09670269910001736052
Irisarri, P., Gonnet, S., & Monza, J. (2001). Cyanobacteria in Uruguayan rice fields: Diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. Journal of Biotechnology, 91(2-3), 95-103. https://doi.org/10.1016/S0168-1656(01)00334-0
Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota II. Teil Oscillatoriales. Elsevier/Spektrum.
Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 295-335. https://www.preslia.cz/article/pdf?id=103
Lemus, N., Guevara, M., Lodeiros, C., Vásquez, A., Freites, L., & Licet, B. (2013). Crecimiento y composición bioquímica de Limnothrix sp. a diferentes salinidades y concentraciones de nitrato. Revista Colombiana de Biotecnología, 15(1), 159-166. https://repositorio.unal.edu.co/handle/unal/39729
Llópiz-Arzuaga, A. (2016). Active compounds from cyanobacteria and microalgae: Properties and potential applications in biomedicine. Bionatura, 1(2), 79-88. http://doi.org/10.21931/RB/2016.01.02.8
Méjean, A., & Ploux, O. (2013). Chapter six - A Genomic View of Secondary Metabolite Production in Cyanobacteria. Advances in Botanical Research, 65, 189-234. https://doi.org/10.1016/B978-0-12-394313-2.00006-8
Merel, S., Walker, D., Chicana, R., Snyder, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cianotoxins. Environment International, 59, 303-327. https://doi.org/10.1016/j.envint.2013.06.013
Min, H., & Sherman, L. (2010). Hydrogen production by the unicellular, Diazotrophic cyanobacterium Cyanothece sp. Strain ATCC 51142 under conditions of continuous light. Applied and Environmental Microbiology, 76(13), 4293-4301. https://doi.org/10.1128/AEM.00146-10
Moffitt, M. C., & Neilan, B. A. (2001). On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiology Letters, 196(2), 207-214. https://doi.org/10.1016/S0378-1097(01)00070-2
Neilan, B. A., Dittmann, E., Rouhiainen, L., Bass, R. A., Schaub, V., Sivonen, K., & Börner, T. (1999). Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. Journal of Bacteriology, 181(13), 4089-4097. http://www.ncbi.nlm.nih.gov/pubmed/10383979
Núbel, U., Ferran, G. P., & Gerard, M. (1997). PCR Primers To Amplify 16S rRNA Genes from Cyanobacteria. Applied and Environmental Microbiology, 68(8), 3327-3332. http://doi.org/10.1128/aem.63.8.3327-3332.1997
Peinador, M. (1999). Las cianobacterias como indicadores de contaminación orgánica. Revista de Biología Tropical, 47(3), 381-391. https://doi.org/10.15517/rbt.v47i3.19105
Peña, J. M. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/76639
Pérez, J. (2003). Caracterización de las secuencias ribosomales 16s (ADNr) de cianobacterias asociadas a eventos de toxicidad [Tesis de maestría, La Paz: Centro de Investigaciones Biológicas del Noroeste].
Pineda-Mendoza, R., Martínez-Jerónimo, F., Garduño-Solórzano, G., & Olvera-Ramírez, R. (2011). Caracterización morfológica y molecular de cianobacterias filamentosas aisladas de florecimientos de tres lagos urbanos eutróficos de la ciudad de México. Polibotánica, 31, 31-50. https://acortar.link/EN46M3
Prato-Valderrama, J. A. (2019). Afloramientos de cianobacterias marinas bentónicas de San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su papel ecológico [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/21920
Prieto, A., & Arias, J. C. (2007). Diversidad biológica del sur de la Amazonia colombiana. En Diversidad biológica y cultural del sur de la Amazonia colombiana. Diagnóstico (pp. 75-256). Corpoamazonia, Instituto Humboldt, Instituto Sinchi, UAESPNN. http://repository.humboldt.org.co/handle/20.500.11761/34605
Ruangsomboon, S., Wongrat, L., Choochote, S., Ganmanee, M., & Saparnklang, A. (2013). Effects of low pH and Pb2+ stress on living cyanobacterium, Phormidium angustissimum West y G.S.West: A test of its feasibility as a living biosorbent. Journal of Applied Phycology, 25, 905-911. https://doi.org/10.1007/s10811-013-0004-9
Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20, 113-136. https://doi.org/10.1007/s10811-007-9188-1
Singh, S. P., Pathak, J., & Sinha, R. P. (2017). Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renewable and Sustainable Energy Reviews, 69, 578-595. https://doi:10.1016/j.rser.2016.11.110
Rastogi, R. P., & Sinha, R. P. (2009). Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances, 27(4). 521-539. https://doi.org/10.1016/j.biotechadv.2009.04.009
Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954-979. https://doi.org/10.1016/j.phytochem.2007.01.012
Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89 (1), 47-57. https://acortar.link/kinxYP
Torres, K. M., Lopes, R. B., Passos, C. J., Pereira, A. C., & Moura, L. S. (2020). Dominance of potentially toxic cyanobacteria on the waterfront of Santarém, Tapajós River, Brazilian Amazon. Revista Ibero-Americana de Ciências Ambientais, 11(6), 298-314. http://doi.org/10.6008/CBPC2179-6858.2020.006.0025
Valerio, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoir. Microbiology, 155, 642-656. https://doi.org/10.1099/mic.0.022848-0
Van Apeldoorn, M. E., Van Egmond, H. P., Speijers G., J. A., & Bakker G. (2007). Review: Toxins of cyanobacteria. Molecular Nutrition and Food. Research, 51(1), 7-60. https://doi.org/10.1002/mnfr.200600185
Whitton, B. y Potts, M. (2002). The Ecology of Cyanobacteria, Their Diversity Time and Space (1 ed.). Springer.
Cómo citar
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt