Resumen
La bioacústica permite monitorear murciélagos difícilmente detectados con métodos tradicionales, como las redes de niebla, y permiten obtener información sobre diferentes aspectos de la biología de las especies de estudio. En los últimos años se ha incrementado el interés por la aplicación de estos métodos y, en consecuencia, ha sido rápido el desarrollo de los equipos de grabación ultrasónica y las herramientas de análisis. Sin embargo, en el Neotrópico la bioacústica de murciélagos está en etapa de crecimiento en algunos países y apenas ahora está apareciendo en otros, por lo cual es necesario fortalecer este campo para estudiar la alta diversidad taxonómica y funcional de la región. En este contexto, es indispensable contar con bibliotecas de señales acústicas, que sirvan como referencia para identificar, validar y comparar las grabaciones de diferentes especies y localidades. Algunos países del Neotrópico han avanzado en este proceso y están construyendo estas bibliotecas de referencia. En Colombia, el trabajo a futuro implica un reto, debido a las más de 200 especies de murciélagos presentes. Este trabajo presenta las bases metodológicas para tomar grabaciones de referencia de murciélagos en Colombia y generar una guía para aquellos que se están iniciando en este campo de investigación.
Referencias
Agosta, S. J. (2002). Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Review, 32(3), 179-198.
https://doi.org/10.1046/j.1365-2907.2002.00103.x
Altringham, J. D. & Fenton, M. B. (2003). Sensory ecology and communication in the Chiroptera. En Kunz, T.H & Fenton, M.B. (Eds.). Bat Ecology. Pp. 90-127. Chicago: The University of Chicago Press.
Araya-Salas, M., Smith-Vidaurre, G. (2017). “warbleR: an r package to streamline analysis of animal acoustic signals.”
http://doi.org/10.1111/2041-210X.12624
Arias-Aguilar, A., Hintze, F., Aguiar, L.M.S., Rufray, V., Bernard, E. & Ramos, P. (2018). Who’s calling? Acoustic identification of Brazilian bats. Mammal Research, 63(3), 231-253.
https://doi.org/10.1007/s13364-018-0367-z
Avila-Flores, R. & Fenton, M. B. (2005). Use of spatial features by foraging insectivorous bats in a large urban landscape. Journal of Mammalogy, 86(6), 1193-1204.
https://doi.org/10.1644/04-MAMM-A-085R1.1
Barataud, M., Giosa, S., Leblanc, F., Rufray, V., Disca, T., Tillon, L., Delaval, M., Haquart, M. & Dewynter, M. (2013). Identification et écologie acoustique des chiroptères de Guyane française. Le Rhinolphe, 19 (1), 103-145.
Barclay, R. M. (1983). Echolocation calls of emballonurid bats from Panama. Journal of Comparative Physiology, 151(4), 515-520.
https://doi.org/10.1007/BF00605468
Barclay, R. M., Fullard, J. H., & Jacobs, D. S. (1999). Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Canadian Journal of Zoology, 77(4), 530-534.
Barlow, K. E., & Jones, G. (1997). Differences in songflight calls and social calls between two phonic types of the vespertilionid bat Pipistrellus pipistrellus. Journal of Zoology, 241(2), 315-324.
https://doi.org/10.1111/j.1469-7998.1997.tb01962.x
Bartoničcka, T., & Zukal, J. (2003). Flight activity and habitat use of four bat species in a small town revealed by bat detectors. Folia Zoologica, 52(2), 155-166.
Beason, R. D., Riesch, R., & Koricheva, J. (2019). AURITA: an affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics, 28 (4), 381-396.
https://doi.org/10.1080/09524622.2018.1463293
Braun de Torrez, E. C., Wallrichs, M. A., Ober, H. K., & McCleery, R. A. (2017). Mobile acoustic transects miss rare bat species: implications of survey method and spatio-temporal sampling for monitoring bats. PeerJ, 5, e3940.
https://doi.org/10.7717/peerj.3940
Brigham, R. M., Kalko, E. K. V., Jones, G., Parsons, S., & Limpens, H. J. G. A. (2002). Bat Echolocation Research: Tools, Techniques and Analysis. Austin, Texas: Conservation International. 174 pp.
Brigham, R. M. (2018). Learning to listen: a primer on bat echolocation research. Canadian Journal of Zoology, 96(9), 3-4.
https://doi.org/10.1139/cjz-2018-0060
Broders, H. G.,Findlay,C. S., & Zheng, L.(2004). Effects of clutter on echolocation call structure of Myotis septentrionalis and M. lucifugus. Journal of Mammalogy, 85(2), 273-281.
Burgin, C.J., Colella, J.P., Kahn, P.L., & Upham, N.S. (2018). How many species of mammals are there? Journal of Mammalogy, 99(1), 1-11.
Caycedo-Rosales, P.C., Ruiz-Muñoz, J.F. & Orozco-Alzate, M. (2013). Reconocimiento automatizado de señales bioacústicas: una revisión de métodos y aplicaciones. Ingeniería y Ciencia, 9(18), 171-195.
Corben, C. (2002). Zero-crossings analysis for bat identification: An overview. En Brigham, R. M., Kalko, E. K. V., Jones, G., Parsons, S., & Limpens, H. J. G. A. (Eds.). Bat Echolocation Research: Tools, Techniques and Analysis. Pp: 95-107. Austin, Texas: Conservation International.
Corben, C. (2003). How Anabat works. The Australasian Bat Society Newsletter, 20, 19-23.
Darwin Core Task Group. (2009). Darwin Core text guide. Biodiversity Information Standards (TDWG).
http://rs.tdwg.org/dwc/terms/guides/text/
Denzinger, A., Siemers, B. M., Schaub, A., & Schnitzler, H. U. (2001). Echolocation by the barbastelle bat, Barbastella barbastellus. Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology, 187(7), 521-528.
https://doi.org/10.1007/s003590100223
Falcão, F., Ugarte-Núñez, J. A., Faria, D., & Caselli, C. B. (2015). Unravelling the calls of discrete hunters: acoustic structure of echolocation calls of furipterid bats (Chiroptera, Furipteridae). Bioacoustics, 24(2), 175-183.
https://doi.org/10.1080/09524622.2015.1017840
Fenton, M.B., Rydell, J., Vonhof, M.J., Eklöf, J., & Lancaster, W.C. (1999). Constant-frequency and frequency-modulated components in the echolocation calls of three species of small bats (Emballonuridae, Thyropteridae, and Vespertilionidae). Canadian Journal of Zoology, 77(12), 1891-1900.
https://doi.org/10.1139/z99-168
Fenton, M. B., Bouchard, S., Vonhof, M. J., & Zigouris, J. (2001). Time-expansion and zero-crossing period meter systems present significantly different views of echolocation calls of bats. Journal of Mammalogy, 82(3), 721-727.
https://doi.org/10.1644/1545-1542
Fenton, M.B., Faure, P.A. & Ratcliffe, J.M. (2012). Evolution of high duty cycle echolocation in bats. Journal of Experimental Biology, 215(17), 2935-2944.
https://doi.org/10.1242/jeb.073171
Fu, Y., & Kloepper, L. N. (2018). A systematic method for isolating, tracking and discriminating time-frequency components of bat echolocation calls. The Journal of the Acoustical Society of America, 143(2), 716-726.
https://doi.org/10.1121/1.5023205
Gillam, E. H., & McCracken, G. F. (2007). Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Animal Behaviour, 74(2), 277-286.
https://doi.org/10.1016/j.anbehav.2006.12.006
Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal behaviour, 8(3-4), 141-154.
Haase, P., Tonkin, J. D., Stoll, S., Burkhard, B., Frenzel, M., Geijzendorffer, I. R., Häuser, C., Klotz, S., Kühn, I., McDowell, W.H., Mirti, M., Müller, F., Musche, M., Penner, J., Zacharias, S., & Schmeller, D. S. (2018). The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 613, 1376-1384.
https://doi.org/10.1016/j.scitotenv.2017.08.111
Heim, O., Heim, D. M., Marggraf, L., Voigt, C. C., Zhang, X., Luo, Y., & Zheng, J. (2019). Variant maps for bat echolocation call identification algorithms. Bioacoustics, 1-15.
https://doi.org/10.1080/09524622.2019.1621776
Jiang, T., Wu, H., & Feng, J. (2015). Patterns and causes of geographic variation in bat echolocation pulses. Integrative Zoology, 10(3), 241-256.
https://doi.org/10.1111/1749-4877.12129
Jones, G., & Ransome, R. D. (1993). Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proceedings of the Royal Society B: Biological Sciences, 252(1334), 125-128.
https://doi.org/10.1098/rspb.1993.0055
Jung, K., Kalko, E. A. V., & Von Helversen, O. (2007). Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. Journal of Zoology, 272(2), 125-137.
https://doi.org/10.1111/j.1469-7998.2006.00250.x
Jung K, Molinari J., & Kalko, E.K.V. (2014). Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLoS One, 9(1).
https://doi.org/10.1371%2Fjournal.pone.0085279
Kalcounis-Rüppell, M. C., Brown, T. J., Handford, P. T., & Ojeda, R. A. (2003). Preliminary notes on bat activity and echolocation in northwestern Argentina. Mastozoología Neotropical, 10(2), 331-339.
Knörnschild, M., Jung, K., Nagy, M., Metz, M., & Kalko, E. (2012). Bat echolocation calls facilitate social communication. Proceedings of the Royal Society B. Biological Sciences, 279(1748), 4827-4835.
https://doi.org/10.1098/rspb.2012.1995
Leiser-Miller, L. B., Kaliszewska, Z. A., Lauterbur, M. E., Mann, B., Riffel, J. A., & Santana, S. E. (2020). A fruitful endeavor: Scent cue and echolocation behavior used by Carollia castanea to find fruit. Integrative Organismal Biology, 2(1), obaa007.
https://doi.org/10.1101/532614
López-Baucells, A., Torrent, L., Rocha, R., Pavan, A. C., Bobrowiec, P. E. D., & Meyer, C. F. (2018). Geographical variation in the high-duty cycle echolocation of the cryptic common mustached bat Pteronotus cf. rubiginosus (Mormoopidae). Bioacoustics, 27(4), 341-357.
https://doi.org/10.1080/09524622.2017.1357145
MacSwiney, M. C., Clarke, F. M., & Racey, P. A. (2008). What you see is not what you get: the role of ultrasonic detectors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45(5), 1364-1371.
https://doi.org/10.1111/j.1365-2664.2008.01531.x
Marchal J., F. Fabianek, C. Scott, C. Corben, D. Riggs, P. Wilson, Wildlife Acoustics, inc. (2020). Bioacoustics package.
https://cran.r-project.org/web/packages/bioacoustics/bioacoustics.pdf
Meyer, C. F., Schwarz, C. J., & Fahr, J. (2004). Activity patterns and habitat preferences of insectivorous bats in a West African forest-savanna mosaic. Journal of Tropical Ecology, 20(4), 397-407.
https://doi.org/10.1017/S0266467404001373
Meyer, C. F. J., Aguiar, L. M. S., Aguirre, L. F., Baumgarten, J., Clarke, F. M., Cosson, J.-F., & Kalko, E. K. V. (2011). Accounting for detectability improves estimates of species richness in tropical bat surveys. Journal of Applied Ecology, 48(3), 777-787.
https://doi.org/10.1111/j.1365-
Mora, E. C., Macías, S., Vater, M., Coro, F., & Kössl, M. (2004). Specializations for aerial hawking in the echolocation system of Molossus molossus (Molossidae, Chiroptera). Journal of Comparative Physiology A, 190(7), 561-574.
Nyquist, H. (1928). Certain topics in telegraph transmission theory. Trans AIEE, 47:617-644.
Obrist, M. K. (1995). Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behavioral Ecology Sociobiology, 36(3), 207-219.
https://doi.org/10.1007/BF00177798
O'Farrell M. J., & Miller, B.W. (1999). Use of vocal signatures for the inventory of free-flying neotropical bats. Biotropica, 31(3), 507-516.
https://doi.org/10.1111/j.1744-7429.1999.tb00394.x
Orozco-Lugo, L., Guillén-Servent, A., Valenzuela-Galván, D., & Arita, H. T. (2013). Descripción de los pulsos de ecolocalización de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México. Therya, 4(1), 33-46.
Parsons, S., & Szewczak, J.M. (2009). Detecting, recording, and analyzing the vocalizations of bats. En Kunz, T.H & Parsons, S. (Eds.). Ecological and Behavioral Methods for the Study of Bats. Pp. 91–111. Baltimore, Maryland Second. Johns Hopkins University Press.
Puechmaille, S. J., Borissov, I. M., Zsebok, S., Allegrini, B., Hizem, M., Kuenzel, S., ... & Siemers, B.M. (2014). Female mate choice can drive the evolution of high frecuency echolocation in bats: a case study with Rhinolophus mehelyi. PLos One, 9(7), e103452.
R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recuperado de
Ramírez-Chaves, H., Suárez-Castro, A., & González-Maya, J. F. (2016). Cambios recientes a la lista de los mamíferos de Colombia. Notas Mastozoológicas, 3(1), 1-20.
Rivera-Parra, P., & Burneo, S. F. (2013). Primera biblioteca de llamadas de ecolocalización de murciélagos del Ecuador. Therya, 4(1), 79-88.
http://doi.org/10.12933/therya-13-104
Rodríguez, A., & Mora, E. C. (2006). The echolocation repertoire of Eptesicus fuscus (Chiroptera: Vespertilionidae) in Cuba. Caribbean Journal of Science, 42(1), 121.
Rogers, D. S., Belk, M. C., González, M. W., & Coleman, B. L. (2006). Patterns of habitat use by bats along a riparian corridor in northern Utah. The Southwestern Naturalist, 51(1), 52-58.
Rojas, V. G., Loeb, S. C., & O’Keefe, J. M. (2019). False-positive occupancy models produce less-biased occupancy estimates for a rare and elusive bat species. Journal of Mammalogy. 100(1), 212-222.
https://doi.org/10.1093/jmammal/gyy162
Russ, J. (2012). British bat calls: A guide to species identification. Pelagic Publishing. 183 pp.
Russo, D., & Jones, G. (2002). Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology, 258(1), 91-103.
https://doi.org/10.1017/S0952836902001231
Russo, D., & Voigt, C. C. (2016). The use of automated identification of bat echolocation calls in acoustic monitoring: A cautionary note for a sound analysis. Ecological Indicators, 66, 598-602.
https://doi.org/10.1016/j.ecolind.2016.02.036
Rydell, J, Arita, H. T., Santos, M., & Granados, J. (2002). Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology, 257(1), 27-36.
https://doi.org/10.1017/S0952836902000626
Sánchez, L., C.R. Moreno & E. C. Mora. Echolocation calls of Natalus primus (Chiroptera: Natalidae): Implications for conservation monitoring of this species. Cogent Biology, 3(1), 1355027.
https://doi.org/10.1080/23312025.2017.1355027
Schmeller, D. S., Weatherdon, L. V., Loyau, A., Bondeau, A., Brotons, L., Brummitt, N., Regan, E. C. (2018). A suite of essential biodiversity variables for detecting critical biodiversity change. Biological Reviews, 93(1), 55-71.
https://doi.org/10.1111/brv.12332
Schnitzler, H.-U., Kalko, E. K. V., Kaipf, I., & Grinnell, A. D. (1994). Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behavioral Ecology and Sociobiology, 35(5), 327-345.
https://doi.org/10.1007/BF00184422
Schnitzler, H.-U., and E. K. V. Kalko. (2001). Echolocation by insect-eating bats. BioScience, 51(7), 557-569.
https://doi.org/10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2
Shannon, C.E. (1949). Communication in the presence of noise. Proc IRE, 37(1), 10-21.
Siemers, B. M. (2004). Bats in the field and in a flight cage: recording and analysis of their echolocation calls and behavior. Bat Echolocation Research: Tools, Techniques, and Analysis, 107-113 Austin, Texas, US.: Bat Conservation International.
Siemers, B. M. (2014). Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PLoS One, 9(7), e103452.
https://doi.org/10.1371/journal.pone.0103452
Siemers, B. M., Kalko, E. K. V., & Schnitzler, H.-U. (2001). Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus? Behavioral Ecology and Sociobiology, 50(4), 317-328.
https://doi.org/10.1007/s002650100379
Siemers, B. M., Beedholm, K., Dietz, C., Dietz, I., & Ivanova, T. (2005). Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? Acta Chiropterologica, 7(2), 259-274.
https://doi.org/10.3161/150811005775162579
Sueur, J., Aubin, T., & Simonis, C. (2008). Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213-226.
http://www.tandfonline.com/doi/abs/10.1080/09524622.2008.9753600.
Simmons, N. B. (2005). An Eocene big bang for bats. Science, 307(5709), 527-528.
https://doi.org/10.1126/science.1108871
Stathopoulos, V., Zamora-Gutiérrez, V., Jones, K. E., & Girolami, M. (2018). Bat echolocation call identification for biodiversity monitoring: a probabilistic approach. Journal of the Royal Statistical Society: Series C (Applied Statistics), 67(1), 165-183.
https://doi.org/10.1111/rssc.12217
Staton, T., & Poulton, S. (2012). Seasonal variation in bat activity in relation to detector height: A case study. Acta Chiropterologica, 14(2), 401-408.
https://doi.org/10.3161/150811012X661710
Szewczak, J. M. (2004). Advanced analysis techniques for identifying bat species. En Brigham M.R., E.K.V. Kalko, G. Jones, S. Parsons, H. J.G.A. Limpens (Eds.). Bat Echolocation Research: Tools, Techniques and Analysis. Pp 121-126. Austin, Texas: Bat Conservation International.
Tschapka, M., Brooke, A.P., & Wasserthal, L.T. (2000). Thyroptera discifera (Chiroptera: Thyropteridae): A new record for Costa Rica and observations on echolocation. International Journal of Mammalian Biology, 65(4), 193-198.
Wilson, D.E., & Mittermeier, R.A. (Ed.). 2019. Handbook of the mammals of the world: bats. Lynx Edicions, Conservation International, IUCN. Barcelona. 1008 p.
Xu, Z., Jing, W., Keping, S., Tinglei, J., Yunlei, J., & Jiang, F. (2008). Echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors. Acta Ecologica Sinica, 28(11), 5248-5258.
https://doi.org/10.1016/S1872-2032(09)60007-X
Yoh, N., Syme, P., Rocha, R., Meyer, C. F., & López-Baucells, A. (2020). Echolocation of Central Amazonian ‘whispering’phyllostomid bats: call design and interspecific variation. Mammal Research, 1-15.
https://doi.org/10.1007/s13364-020-00503-0
Zamora-Gutiérrez, V., López-González, C., MacSwiney González, M. C., Fenton, B., Jones, G., Kalko, E. K. V., Jones, K. E. (2016). Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design. Methods in Ecology and Evolution, 7(9), 1082-1091.
https://doi.org/10.1111/2041-210X.12556
Zamora‐Gutiérrez, V., Ortega, J., Avila‐Flores, R., Aguilar‐Rodríguez, P. A., Alarcón‐Montano, M., Avila‐Torresagatón, L. G., ... & Chávez‐Cauich, M. (2020). The Sonozotz project: Assembling an echolocation call library for bats in a megadiverse country. Ecology and Evolution, 1-16.
https://doi.org/10.1002/ece3.6245
Zurc, D., Guillén-Servent, A., & Solari, S. (2017). Chillidos de ecolocación de murciélagos Emballonuridae en una sabana xerófila-semiseca del Caribe Colombiano. Mastozoología Neotropical, 24(1), 201-218.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt