Caracterización anatómica de tres especies arbóreas del Chocó biogeográfico

Resumen (es):

Este artículo caracteriza la anatomía de la madera de Cassipourea guianensis, Qualea lineata y Goupia glabra, especies de árboles del Chocó biogeográfico, y la compara la de individuos que crecen en bosques menos lluviosos del Neotrópico. Los resultados indican que las tres especies difieren en densidad, diámetro y longitud de los elementos de vaso. Todas presentan vasos que van de solitarios a múltiples, lo que sugiere estrategias contrastantes de adquisición y uso del agua. Este estudio busca fortalecer el conocimiento sobre las especies arbóreas tropicales, con miras a su gestión sostenible y a futuras investigaciones.

Resumen (en):

This study characterizes the wood anatomy of Cassipourea guianensis, Qualea lineata, and Goupia glabra, tree species from the Chocó biogeographic region, and compares it with that of individuals growing in less rainy Neotropical forests. The results indicate that the three species differ in density, diameter, and length of vessel elements. All exhibit vessels ranging from solitary to multiple, suggesting contrasting strategies for water acquisition and use. This study aims to strengthen knowledge of tropical tree species to support their sustainable management and future research.

Palabras clave:

ecología funcional, estrategias hídricas, anatomía comparada, morfología xilemática, biodiversidad tropical (es)

functional ecology, water-use strategies, comparative anatomy, xylem morphology, tropical biodiversity (en)

Dimensions

PlumX

Visitas

39

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Albarán, N. J. (2020). Avances y perspectivas de investigación en biodiversidad y su uso en el territorio colectivo del Bajo Calima. Universidad del Tolima.

BIOREDD+ Project. (2014). BIOREDD+ Cajambre REDD+ Project: Project description document (Version 2.2). Ecological Carbon Offsets Partners, LLC; Offsetters; ClearSky Climate Solutions. https://s3.amazonaws.com/CCBA/Projects/BIOREDD%2B_Cajambre_REDD%2B_Project/Cajambre_PDD_Final_Draft_v2.2.pdf

Bocanegra-González, K., Cuevas-González, J. P., Dexter, K., & Pennington, T. (2024). The genus Inga in the Chocó region. Universidad del Tolima.

Braz, E. M., Mattos, P. P. D., Oliveira, M. F., & Basso, R. O. (2014). Strategies for Achieving Sustainable Logging Rate in the Brazilian Amazon Forest. Open Journal of Forestry, 4(2), 100-105. https://doi.org/10.4236/ojf.2014.42015

Carlquist, S. (2001). Comparative wood anatomy: Systematic, ecological, and evolutionary aspects of dicotyledon wood. En T. Timell (Ed.), Comparative Wood Anatomy. Springer. https://doi.org/10.1007/978-3-662-04578-7

Crivellaro, A., & Schweingruber, F. H. (2015). Stem anatomical features of Dicotyledons. (Originalausgabe). Verlag.

da Silva, N., Deklerck, V., Baetens, J. M., Van Den Bulcke, J., De Ridder, M., Rousseau, M., Bruno, O. M., Beeckman, H., Van Acker, J., De Baets, B., & Verwaeren, J. (2022). Improved wood species identification based on multi-view imagery of the three anatomical planes. Plant Methods, 18(1), 79. https://doi.org/10.1186/s13007-022-00910-1

David, D. (2024). Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/86070

de Mendiburu, F. (2023). agricolae: Statistical Procedures for Agricultural Research (Versión R package version 1.3-7) [Software]. https://CRAN.R-project.org/package=agricolae

Faber-Langendoen, D., & Gentry, A. H. (1991). The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica, 23(1), 2-11. https://doi.org/10.2307/2388682

Fern, K. (2024). Cassipourea guianensis. Tropical Plants Database. https://tropical.theferns.info/viewtropical.php?id=Cassipourea+guianensis

Ferreira, C., & Inga, G. (2022). Guía de anatomía e identificación de 50 especies maderables comerciales en Selva Central, Perú. Universidad Continental. https://doi.org/10.18259/978-612-4443-43-5

Fontes, C. G., Pinto-Ledezma, J., Jacobsen, A. L., Pratt, R. B., & Cavender-Bares, J. (2022). Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Functional Ecology, 36(2), 326-340. https://doi.org/10.1111/1365-2435.13964

Galeano, G. (2001). Estructura, riqueza y composición de plantas leñosas en el golfo de Tribugá, Chocó, Colombia. Caldasia, 23(1), 213-236.

Gärtner, H., & Schweingruber, F. H. (2013). Microscopic preparation techniques for plant stem analysis. Kessel Publishing House.

Giraldo, J. A., Valle, J. I. del, González-Caro, S., David, D. A., Taylor, T., Tobón, C., & Sierra, C. A. (2023). Tree growth periodicity in the ever-wet tropical forest of the Americas. Journal of Ecology, 111(4), 889-902. https://doi.org/10.1111/1365-2745.14069

Giraldo, J. A., Valle, J. I. del, Sierra, C. A., & Melo, O. (2020). Dendrochronological potential of trees from America’s rainiest region. En M. Pompa-García & J. J. Camarero (Eds.), Latin American Dendroecology (pp. 79-119). Springer. https://doi.org/10.1007/978-3-030-36930-9_5

Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689-701. https://doi.org/10.1093/treephys/26.6.689

Herrera-Ramírez, D., Sierra, C. A., Römermann, C., Muhr, J., Trumbore, S., Silvério, D., Brando, P. M., & Hartmann, H. (2021). Starch and lipid storage strategies in tropical trees relate to growth and mortality. New Phytologist, 230(1), 139-154. https://doi.org/10.1111/nph.17239

Holdridge, L. R. (1967). Life zone ecology. Tropical Science Center, Costa Rica. https://doi.org/Via 10.1046/j.1365-2699.1999.00329.x

IAWA Committee. (1989). IAWA list of microscopic features for hardwood identification. AIWA Bulletin, 10(3), 219-332.

InsideWood. (2004). InsideWood database. http://insidewood.lib.ncsu.edu/search

Jaramillo, M. A. (2006). Using Piper Species Diversity to Identify Conservation Priorities in the Chocó Region of Colombia. Biodiversity & Conservation, 15(5), 1695-1712. https://doi.org/10.1007/s10531-004-5018-9

León, W. (2003). Anatomía xilemática comparativa de los géneros Qualea y Ruizterania (Vochysiaceae). Pittieria, 32, 69-81.

Lozano, D., & Pineda, Y. (2015). Descripción anatómica y no anatómica de la madera de cuatro especies procedentes del Bajo Calima, Buenaventura. Universidad del Tolima.

Martínez, C. E., Orrego, S. A., Giraldo, J. A., Del Valle, J. I., Hernández-Barajas, F., & David, D. A. (2025). Autocorrelation as a critical factor of growth depensation of tropical trees in the Chocó biogeographic region. Ecological Modelling, 500, 110949. https://doi.org/10.1016/j.ecolmodel.2024.110949

Martínez-Celis, J. M., Bonilla-Jaimes, D. C., Díaz-López, S. M., & Vega-Marín, C. A. (2024). Influencia de factores ambientales en rasgos funcionales anatómicos e hidráulicos de madera en bosque seco tropical. Biota Colombiana, 25, e1207. https://doi.org/10.21068/2539200x.1207

Mesa, O. J., & Rojo, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 857-875. https://doi.org/10.18257/raccefyn.899

Miller, R., & Détienne, P. (2001). Major timber trees of Guyana wood anatomy. Tropenbos International.

Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global Biodiversity Conservation: The Critical Role of Hotspots. En F. E. Zachos & J. C. Habel (Eds.), Biodiversity Hotspots (pp. 3-22). Springer. https://doi.org/10.1007/978-3-642-20992-5_1

Myers, N., Mittermeler, R. A., Mittermeler, C. G., Fonseca, G. A. B. D., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501

Pérez-Escobar, O., Lucas, E., Jaramillo, C., Monro, A., Morris, S., Borgarin, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez, A., & Antonelli, A. (2019). The Origin and Diversification of the Hyperdiverse Flora in the Chocó Biogeographic Region. Frontiers in Plant Science, 10, 1-9. https://doi.org/10.3389/fpls.2019.01328

Plavcová, L., Olson, M. E., Jandová, V., & Doležal, J. (2023). Parenchyma is not the sole site of storage: Storage in living fibres. IAWA Journal, 44(3-4), 465-476. https://doi.org/10.1163/22941932-bja10112

Polanco, C., & Grande, D. C. (2008). Análisis ecoanatómico, evolutivo y comparativo de la madera de 40 especies de dos asociaciones del bosque altoandino colombiano. Colombia Forestal, 12(0), 183. https://doi.org/10.14483/udistrital.jour.colomb.for.2009.1.a13

Poveda, G., Álvarez, D. M., & Rueda, Ó. A. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11-12), 2233-2249. https://doi.org/10.1007/s00382-010-0931-y

R Core Team. (2025). R: A Language and Environment for Statistical Computing (R version 4.5.1) [Software]. R Foundation for Statistical Computing. https://www.r-project.org/

Robert, E. M. R., Koedam, N., Beeckman, H., & Schmitz, N. (2009). A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Functional Ecology, 23(4), 649-657. https://doi.org/10.1111/j.1365-2435.2009.01551.x

Rodríguez-Ramírez, E. C., Ferrero, M. E., Acevedo-Vega, I., Crispin-DelaCruz, D. B., Ticse-Otarola, G., & Requena-Rojas, E. J. (2022). Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25645-w

Ruffinatto, F., & Crivellaro, A. (2019). Atlas of Macroscopic Wood Identification. En Atlas of Macroscopic Wood Identification. https://doi.org/10.1007/978-3-030-23566-6

Schweingruber, F. H. (2007). Wood structure and environment. Springer.

Serna González, M., Franco, J., Giraldo, J. A., Muriel-Ruíz, S., Mercado-Mesa, M., & Cardona-Medina, E. (2024). Guía de laboratorios de botánica y fisiología. Tecnológico de Antioquia.

Słupianek, A., Dolzblasz, A., & Sokołowska, K. (2021). Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees. Plants, 10(6), 1247. https://doi.org/10.3390/plants10061247

Tyree, M. T., & Zimmermannn, M. (2002). Xylem Structure and the Ascent of Sap. Springer. https://doi.org/10.1007/978-3-662-04931-0

Von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., & Carrer, M. (2016). Quantitative Wood Anatomy—Practical Guidelines. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00781

Wheeler, E. A., Baas, P., & Rodgers, S. (2007). Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA Journal, 28(3), 229-258. https://doi.org/10.1163/22941932-90001638

Cómo citar

Londoño-Mesa, B. A., Franco-Gaviria, F., Trujillo-Vargas, L., Serna-González, M., & Giraldo, J. (2025). Caracterización anatómica de tres especies arbóreas del Chocó biogeográfico. Biota Colombiana, 26, e1282. https://doi.org/10.21068/2539200X.1282
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2025 Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt